# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals import os import sys import json import cv2 import numpy as np import logging logger = logging.getLogger(__name__) __all__ = [ 'bbox_eval', 'mask_eval', 'bbox2out', 'mask2out', 'get_category_info', 'proposal_eval', 'cocoapi_eval', ] def clip_bbox(bbox): xmin = max(min(bbox[0], 1.), 0.) ymin = max(min(bbox[1], 1.), 0.) xmax = max(min(bbox[2], 1.), 0.) ymax = max(min(bbox[3], 1.), 0.) return xmin, ymin, xmax, ymax def proposal_eval(results, anno_file, outfile, max_dets=(100, 300, 1000)): assert 'proposal' in results[0] assert outfile.endswith('.json') xywh_results = proposal2out(results) assert len( xywh_results) > 0, "The number of valid proposal detected is zero.\n \ Please use reasonable model and check input data." with open(outfile, 'w') as f: json.dump(xywh_results, f) cocoapi_eval(outfile, 'proposal', anno_file=anno_file, max_dets=max_dets) # flush coco evaluation result sys.stdout.flush() def bbox_eval(results, anno_file, outfile, with_background=True, is_bbox_normalized=False): assert 'bbox' in results[0] assert outfile.endswith('.json') from pycocotools.coco import COCO coco_gt = COCO(anno_file) cat_ids = coco_gt.getCatIds() # when with_background = True, mapping category to classid, like: # background:0, first_class:1, second_class:2, ... clsid2catid = dict( {i + int(with_background): catid for i, catid in enumerate(cat_ids)}) xywh_results = bbox2out( results, clsid2catid, is_bbox_normalized=is_bbox_normalized) if len(xywh_results) == 0: logger.warning("The number of valid bbox detected is zero.\n \ Please use reasonable model and check input data.\n \ stop eval!") return [0.0] with open(outfile, 'w') as f: json.dump(xywh_results, f) map_stats = cocoapi_eval(outfile, 'bbox', coco_gt=coco_gt) # flush coco evaluation result sys.stdout.flush() return map_stats def mask_eval(results, anno_file, outfile, resolution, thresh_binarize=0.5): assert 'mask' in results[0] assert outfile.endswith('.json') from pycocotools.coco import COCO coco_gt = COCO(anno_file) clsid2catid = {i + 1: v for i, v in enumerate(coco_gt.getCatIds())} segm_results = [] for t in results: im_ids = np.array(t['im_id'][0]) bboxes = t['bbox'][0] lengths = t['bbox'][1][0] masks = t['mask'] if bboxes.shape == (1, 1) or bboxes is None: continue if len(bboxes.tolist()) == 0: continue s = 0 for i in range(len(lengths)): num = lengths[i] im_id = int(im_ids[i][0]) clsid_scores = bboxes[s:s + num][:, 0:2] mask = masks[s:s + num] s += num for j in range(num): clsid, score = clsid_scores[j].tolist() catid = int(clsid2catid[clsid]) segm = mask[j] segm['counts'] = segm['counts'].decode('utf8') coco_res = { 'image_id': im_id, 'category_id': int(catid), 'segmentation': segm, 'score': score } segm_results.append(coco_res) if len(segm_results) == 0: logger.warning("The number of valid mask detected is zero.\n \ Please use reasonable model and check input data.") return with open(outfile, 'w') as f: json.dump(segm_results, f) cocoapi_eval(outfile, 'segm', coco_gt=coco_gt) def cocoapi_eval(jsonfile, style, coco_gt=None, anno_file=None, max_dets=(100, 300, 1000)): """ Args: jsonfile: Evaluation json file, eg: bbox.json, mask.json. style: COCOeval style, can be `bbox` , `segm` and `proposal`. coco_gt: Whether to load COCOAPI through anno_file, eg: coco_gt = COCO(anno_file) anno_file: COCO annotations file. max_dets: COCO evaluation maxDets. """ assert coco_gt != None or anno_file != None from pycocotools.coco import COCO from pycocotools.cocoeval import COCOeval if coco_gt == None: coco_gt = COCO(anno_file) logger.info("Start evaluate...") coco_dt = coco_gt.loadRes(jsonfile) if style == 'proposal': coco_eval = COCOeval(coco_gt, coco_dt, 'bbox') coco_eval.params.useCats = 0 coco_eval.params.maxDets = list(max_dets) else: coco_eval = COCOeval(coco_gt, coco_dt, style) coco_eval.evaluate() coco_eval.accumulate() coco_eval.summarize() return coco_eval.stats def proposal2out(results, is_bbox_normalized=False): xywh_res = [] for t in results: bboxes = t['proposal'][0] lengths = t['proposal'][1][0] im_ids = np.array(t['im_id'][0]).flatten() assert len(lengths) == im_ids.size if bboxes.shape == (1, 1) or bboxes is None: continue k = 0 for i in range(len(lengths)): num = lengths[i] im_id = int(im_ids[i]) for j in range(num): dt = bboxes[k] xmin, ymin, xmax, ymax = dt.tolist() if is_bbox_normalized: xmin, ymin, xmax, ymax = \ clip_bbox([xmin, ymin, xmax, ymax]) w = xmax - xmin h = ymax - ymin else: w = xmax - xmin + 1 h = ymax - ymin + 1 bbox = [xmin, ymin, w, h] coco_res = { 'image_id': im_id, 'category_id': 1, 'bbox': bbox, 'score': 1.0 } xywh_res.append(coco_res) k += 1 return xywh_res def bbox2out(results, clsid2catid, is_bbox_normalized=False): """ Args: results: request a dict, should include: `bbox`, `im_id`, if is_bbox_normalized=True, also need `im_shape`. clsid2catid: class id to category id map of COCO2017 dataset. is_bbox_normalized: whether or not bbox is normalized. """ xywh_res = [] for t in results: bboxes = t['bbox'][0] if len(t['bbox'][1]) == 0: continue lengths = t['bbox'][1][0] im_ids = np.array(t['im_id'][0]).flatten() if bboxes.shape == (1, 1) or bboxes is None or len(bboxes) == 0: continue k = 0 for i in range(len(lengths)): num = lengths[i] im_id = int(im_ids[i]) for j in range(num): dt = bboxes[k] clsid, score, xmin, ymin, xmax, ymax = dt.tolist() catid = (clsid2catid[int(clsid)]) if is_bbox_normalized: xmin, ymin, xmax, ymax = \ clip_bbox([xmin, ymin, xmax, ymax]) w = xmax - xmin h = ymax - ymin im_shape = t['im_shape'][0][i].tolist() im_height, im_width = int(im_shape[0]), int(im_shape[1]) xmin *= im_width ymin *= im_height w *= im_width h *= im_height else: w = xmax - xmin + 1 h = ymax - ymin + 1 bbox = [xmin, ymin, w, h] coco_res = { 'image_id': im_id, 'category_id': catid, 'bbox': bbox, 'score': score } xywh_res.append(coco_res) k += 1 return xywh_res def mask2out(results, clsid2catid, resolution, thresh_binarize=0.5): import pycocotools.mask as mask_util scale = (resolution + 2.0) / resolution segm_res = [] # for each batch for t in results: bboxes = t['bbox'][0] lengths = t['bbox'][1][0] im_ids = np.array(t['im_id'][0]) if bboxes.shape == (1, 1) or bboxes is None: continue if len(bboxes.tolist()) == 0: continue masks = t['mask'][0] s = 0 # for each sample for i in range(len(lengths)): num = lengths[i] im_id = int(im_ids[i][0]) im_shape = t['im_shape'][0][i] bbox = bboxes[s:s + num][:, 2:] clsid_scores = bboxes[s:s + num][:, 0:2] mask = masks[s:s + num] s += num im_h = int(im_shape[0]) im_w = int(im_shape[1]) expand_bbox = expand_boxes(bbox, scale) expand_bbox = expand_bbox.astype(np.int32) padded_mask = np.zeros( (resolution + 2, resolution + 2), dtype=np.float32) for j in range(num): xmin, ymin, xmax, ymax = expand_bbox[j].tolist() clsid, score = clsid_scores[j].tolist() clsid = int(clsid) padded_mask[1:-1, 1:-1] = mask[j, clsid, :, :] catid = clsid2catid[clsid] w = xmax - xmin + 1 h = ymax - ymin + 1 w = np.maximum(w, 1) h = np.maximum(h, 1) resized_mask = cv2.resize(padded_mask, (w, h)) resized_mask = np.array( resized_mask > thresh_binarize, dtype=np.uint8) im_mask = np.zeros((im_h, im_w), dtype=np.uint8) x0 = min(max(xmin, 0), im_w) x1 = min(max(xmax + 1, 0), im_w) y0 = min(max(ymin, 0), im_h) y1 = min(max(ymax + 1, 0), im_h) im_mask[y0:y1, x0:x1] = resized_mask[(y0 - ymin):(y1 - ymin), ( x0 - xmin):(x1 - xmin)] segm = mask_util.encode( np.array( im_mask[:, :, np.newaxis], order='F'))[0] catid = clsid2catid[clsid] segm['counts'] = segm['counts'].decode('utf8') coco_res = { 'image_id': im_id, 'category_id': catid, 'segmentation': segm, 'score': score } segm_res.append(coco_res) return segm_res def expand_boxes(boxes, scale): """ Expand an array of boxes by a given scale. """ w_half = (boxes[:, 2] - boxes[:, 0]) * .5 h_half = (boxes[:, 3] - boxes[:, 1]) * .5 x_c = (boxes[:, 2] + boxes[:, 0]) * .5 y_c = (boxes[:, 3] + boxes[:, 1]) * .5 w_half *= scale h_half *= scale boxes_exp = np.zeros(boxes.shape) boxes_exp[:, 0] = x_c - w_half boxes_exp[:, 2] = x_c + w_half boxes_exp[:, 1] = y_c - h_half boxes_exp[:, 3] = y_c + h_half return boxes_exp def get_category_info(anno_file=None, with_background=True, use_default_label=False): if use_default_label or anno_file is None \ or not os.path.exists(anno_file): logger.info("Not found annotation file {}, load " "coco17 categories.".format(anno_file)) return coco17_category_info(with_background) else: logger.info("Load categories from {}".format(anno_file)) return get_category_info_from_anno(anno_file, with_background) def get_category_info_from_anno(anno_file, with_background=True): """ Get class id to category id map and category id to category name map from annotation file. Args: anno_file (str): annotation file path with_background (bool, default True): whether load background as class 0. """ from pycocotools.coco import COCO coco = COCO(anno_file) cats = coco.loadCats(coco.getCatIds()) clsid2catid = { i + int(with_background): cat['id'] for i, cat in enumerate(cats) } catid2name = {cat['id']: cat['name'] for cat in cats} return clsid2catid, catid2name def coco17_category_info(with_background=True): """ Get class id to category id map and category id to category name map of COCO2017 dataset Args: with_background (bool, default True): whether load background as class 0. """ clsid2catid = { 1: 1, 2: 2, 3: 3, 4: 4, 5: 5, 6: 6, 7: 7, 8: 8, 9: 9, 10: 10, 11: 11, 12: 13, 13: 14, 14: 15, 15: 16, 16: 17, 17: 18, 18: 19, 19: 20, 20: 21, 21: 22, 22: 23, 23: 24, 24: 25, 25: 27, 26: 28, 27: 31, 28: 32, 29: 33, 30: 34, 31: 35, 32: 36, 33: 37, 34: 38, 35: 39, 36: 40, 37: 41, 38: 42, 39: 43, 40: 44, 41: 46, 42: 47, 43: 48, 44: 49, 45: 50, 46: 51, 47: 52, 48: 53, 49: 54, 50: 55, 51: 56, 52: 57, 53: 58, 54: 59, 55: 60, 56: 61, 57: 62, 58: 63, 59: 64, 60: 65, 61: 67, 62: 70, 63: 72, 64: 73, 65: 74, 66: 75, 67: 76, 68: 77, 69: 78, 70: 79, 71: 80, 72: 81, 73: 82, 74: 84, 75: 85, 76: 86, 77: 87, 78: 88, 79: 89, 80: 90 } catid2name = { 0: 'background', 1: 'person', 2: 'bicycle', 3: 'car', 4: 'motorcycle', 5: 'airplane', 6: 'bus', 7: 'train', 8: 'truck', 9: 'boat', 10: 'traffic light', 11: 'fire hydrant', 13: 'stop sign', 14: 'parking meter', 15: 'bench', 16: 'bird', 17: 'cat', 18: 'dog', 19: 'horse', 20: 'sheep', 21: 'cow', 22: 'elephant', 23: 'bear', 24: 'zebra', 25: 'giraffe', 27: 'backpack', 28: 'umbrella', 31: 'handbag', 32: 'tie', 33: 'suitcase', 34: 'frisbee', 35: 'skis', 36: 'snowboard', 37: 'sports ball', 38: 'kite', 39: 'baseball bat', 40: 'baseball glove', 41: 'skateboard', 42: 'surfboard', 43: 'tennis racket', 44: 'bottle', 46: 'wine glass', 47: 'cup', 48: 'fork', 49: 'knife', 50: 'spoon', 51: 'bowl', 52: 'banana', 53: 'apple', 54: 'sandwich', 55: 'orange', 56: 'broccoli', 57: 'carrot', 58: 'hot dog', 59: 'pizza', 60: 'donut', 61: 'cake', 62: 'chair', 63: 'couch', 64: 'potted plant', 65: 'bed', 67: 'dining table', 70: 'toilet', 72: 'tv', 73: 'laptop', 74: 'mouse', 75: 'remote', 76: 'keyboard', 77: 'cell phone', 78: 'microwave', 79: 'oven', 80: 'toaster', 81: 'sink', 82: 'refrigerator', 84: 'book', 85: 'clock', 86: 'vase', 87: 'scissors', 88: 'teddy bear', 89: 'hair drier', 90: 'toothbrush' } if not with_background: clsid2catid = {k - 1: v for k, v in clsid2catid.items()} return clsid2catid, catid2name