# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import from __future__ import division from __future__ import print_function from collections import OrderedDict from paddle import fluid from ppdet.core.workspace import register import numpy as np __all__ = ['CornerNetSqueeze'] def rescale_bboxes(bboxes, ratios, borders): x1, y1, x2, y2 = fluid.layers.split(bboxes, 4) x1 = x1 / ratios[:, 1] - borders[:, 2] x2 = x2 / ratios[:, 1] - borders[:, 2] y1 = y1 / ratios[:, 0] - borders[:, 0] y2 = y2 / ratios[:, 0] - borders[:, 0] return fluid.layers.concat([x1, y1, x2, y2], axis=2) @register class CornerNetSqueeze(object): """ """ __category__ = 'architecture' __inject__ = ['backbone', 'corner_head', 'fpn'] __shared__ = ['num_classes'] def __init__(self, backbone, corner_head='CornerHead', num_classes=80, fpn=None): super(CornerNetSqueeze, self).__init__() self.backbone = backbone self.corner_head = corner_head self.num_classes = num_classes self.fpn = fpn def build(self, feed_vars, mode='train'): im = feed_vars['image'] body_feats = self.backbone(im) if self.fpn is not None: body_feats, _ = self.fpn.get_output(body_feats) body_feats = [body_feats.values()[-1]] if mode == 'train': target_vars = [ 'tl_heatmaps', 'br_heatmaps', 'tag_masks', 'tl_regrs', 'br_regrs', 'tl_tags', 'br_tags' ] target = {key: feed_vars[key] for key in target_vars} self.corner_head.get_output(body_feats) loss = self.corner_head.get_loss(target) return loss elif mode == 'test': ratios = feed_vars['ratios'] borders = feed_vars['borders'] bboxes, scores, tl_scores, br_scores, clses = self.corner_head.get_prediction( body_feats[-1]) bboxes = rescale_bboxes(bboxes, ratios, borders) detections = fluid.layers.concat([clses, scores, bboxes], axis=2) detections = detections[0] return {'bbox': detections} def _inputs_def(self, image_shape, output_size, max_tag_len): im_shape = [None] + image_shape C = self.num_classes # yapf: disable inputs_def = { 'image': {'shape': im_shape, 'dtype': 'float32', 'lod_level': 0}, 'im_id': {'shape': [None, 1], 'dtype': 'int64', 'lod_level': 0}, 'gt_bbox': {'shape': [None, 4], 'dtype': 'float32', 'lod_level': 1}, 'gt_class': {'shape': [None, 1], 'dtype': 'int32', 'lod_level': 1}, 'ratios': {'shape': [None, 2], 'dtype': 'float32', 'lod_level': 0}, 'borders': {'shape': [None, 4], 'dtype': 'float32', 'lod_level': 0}, 'tl_heatmaps': {'shape': [None, C, output_size, output_size], 'dtype': 'float32', 'lod_level': 0}, 'br_heatmaps': {'shape': [None, C, output_size, output_size], 'dtype': 'float32', 'lod_level': 0}, 'tl_regrs': {'shape': [None, max_tag_len, 2], 'dtype': 'float32', 'lod_level': 0}, 'br_regrs': {'shape': [None, max_tag_len, 2], 'dtype': 'float32', 'lod_level': 0}, 'tl_tags': {'shape': [None, max_tag_len], 'dtype': 'int64', 'lod_level': 0}, 'br_tags': {'shape': [None, max_tag_len], 'dtype': 'int64', 'lod_level': 0}, 'tag_masks': {'shape': [None, max_tag_len], 'dtype': 'int32', 'lod_level': 0}, } # yapf: enable return inputs_def def build_inputs( self, image_shape=[3, None, None], fields=[ 'image', 'im_id', 'gt_box', 'gt_class', 'tl_heatmaps', 'br_heatmaps', 'tl_regrs', 'br_regrs', 'tl_tags', 'br_tags', 'tag_masks' ], # for train output_size=64, max_tag_len=128, use_dataloader=True, iterable=False): inputs_def = self._inputs_def(image_shape, output_size, max_tag_len) feed_vars = OrderedDict([(key, fluid.data( name=key, shape=inputs_def[key]['shape'], dtype=inputs_def[key]['dtype'], lod_level=inputs_def[key]['lod_level'])) for key in fields]) loader = fluid.io.DataLoader.from_generator( feed_list=list(feed_vars.values()), capacity=64, use_double_buffer=True, iterable=iterable) if use_dataloader else None return feed_vars, loader def train(self, feed_vars): return self.build(feed_vars, mode='train') def eval(self, feed_vars): return self.build(feed_vars, mode='test') def test(self, feed_vars): return self.build(feed_vars, mode='test')