// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "include/picodet_postprocess.h" namespace PaddleDetection { float fast_exp(float x) { union { uint32_t i; float f; } v{}; v.i = (1 << 23) * (1.4426950409 * x + 126.93490512f); return v.f; } template int activation_function_softmax(const _Tp *src, _Tp *dst, int length) { const _Tp alpha = *std::max_element(src, src + length); _Tp denominator{0}; for (int i = 0; i < length; ++i) { dst[i] = fast_exp(src[i] - alpha); denominator += dst[i]; } for (int i = 0; i < length; ++i) { dst[i] /= denominator; } return 0; } // PicoDet decode PaddleDetection::ObjectResult disPred2Bbox(const float *&dfl_det, int label, float score, int x, int y, int stride, std::vector im_shape, int reg_max) { float ct_x = (x + 0.5) * stride; float ct_y = (y + 0.5) * stride; std::vector dis_pred; dis_pred.resize(4); for (int i = 0; i < 4; i++) { float dis = 0; float* dis_after_sm = new float[reg_max + 1]; activation_function_softmax(dfl_det + i * (reg_max + 1), dis_after_sm, reg_max + 1); for (int j = 0; j < reg_max + 1; j++) { dis += j * dis_after_sm[j]; } dis *= stride; dis_pred[i] = dis; delete[] dis_after_sm; } int xmin = (int)(std::max)(ct_x - dis_pred[0], .0f); int ymin = (int)(std::max)(ct_y - dis_pred[1], .0f); int xmax = (int)(std::min)(ct_x + dis_pred[2], (float)im_shape[0]); int ymax = (int)(std::min)(ct_y + dis_pred[3], (float)im_shape[1]); PaddleDetection::ObjectResult result_item; result_item.rect = {xmin, ymin, xmax, ymax}; result_item.class_id = label; result_item.confidence = score; return result_item; } void PicoDetPostProcess(std::vector* results, std::vector outs, std::vector fpn_stride, std::vector im_shape, std::vector scale_factor, float score_threshold, float nms_threshold, int num_class, int reg_max) { std::vector> bbox_results; bbox_results.resize(num_class); int in_h = im_shape[0], in_w = im_shape[1]; for (int i = 0; i < fpn_stride.size(); ++i) { int feature_h = in_h / fpn_stride[i]; int feature_w = in_w / fpn_stride[i]; for (int idx = 0; idx < feature_h * feature_w; idx++) { const float *scores = outs[i] + (idx * num_class); int row = idx / feature_w; int col = idx % feature_w; float score = 0; int cur_label = 0; for (int label = 0; label < num_class; label++) { if (scores[label] > score) { score = scores[label]; cur_label = label; } } if (score > score_threshold) { const float *bbox_pred = outs[i + fpn_stride.size()] + (idx * 4 * (reg_max + 1)); bbox_results[cur_label].push_back(disPred2Bbox(bbox_pred, cur_label, score, col, row, fpn_stride[i], im_shape, reg_max)); } } } for (int i = 0; i < (int)bbox_results.size(); i++) { PaddleDetection::nms(bbox_results[i], nms_threshold); for (auto box : bbox_results[i]) { box.rect[0] = box.rect[0] / scale_factor[1]; box.rect[2] = box.rect[2] / scale_factor[1]; box.rect[1] = box.rect[1] / scale_factor[0]; box.rect[3] = box.rect[3] / scale_factor[0]; results->push_back(box); } } } } // namespace PaddleDetection