from __future__ import absolute_import from __future__ import division from __future__ import print_function import os, sys # add python path of PadleDetection to sys.path parent_path = os.path.abspath(os.path.join(__file__, *(['..'] * 2))) if parent_path not in sys.path: sys.path.append(parent_path) import time # ignore numba warning import warnings warnings.filterwarnings('ignore') import random import numpy as np import paddle.fluid as fluid from ppdet.core.workspace import load_config, merge_config, create from ppdet.utils.check import check_gpu, check_version, check_config from ppdet.utils.cli import ArgsParser from ppdet.utils.eval_utils import coco_eval_results from ppdet.data.reader import create_reader from ppdet.utils.checkpoint import load_dygraph_ckpt, save_dygraph_ckpt def parse_args(): parser = ArgsParser() parser.add_argument( "--output_eval", default=None, type=str, help="Evaluation directory, default is current directory.") parser.add_argument( '--json_eval', action='store_true', default=False, help='') parser.add_argument( '--use_gpu', action='store_true', default=False, help='') args = parser.parse_args() return args def run(FLAGS, cfg): # Model main_arch = cfg.architecture model = create(cfg.architecture) # Init Model model = load_dygraph_ckpt(model, ckpt=cfg.weights) # Data Reader if FLAGS.use_gpu: devices_num = 1 else: devices_num = int(os.environ.get('CPU_NUM', 1)) eval_reader = create_reader(cfg.EvalReader, devices_num=devices_num) # Run Eval outs_res = [] for iter_id, data in enumerate(eval_reader()): start_time = time.time() # forward model.eval() outs = model(data, cfg['EvalReader']['inputs_def']['fields'], 'infer') outs_res.append(outs) # log cost_time = time.time() - start_time print("Eval iter: {}, time: {}".format(iter_id, cost_time)) # Metric coco_eval_results( outs_res, include_mask=True if 'MaskHead' in cfg else False, dataset=cfg['EvalReader']['dataset']) def main(): FLAGS = parse_args() cfg = load_config(FLAGS.config) merge_config(FLAGS.opt) check_config(cfg) check_gpu(cfg.use_gpu) check_version() place = fluid.CUDAPlace(fluid.dygraph.parallel.Env() .dev_id) if cfg.use_gpu else fluid.CPUPlace() with fluid.dygraph.guard(place): run(FLAGS, cfg) if __name__ == '__main__': main()