# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import from __future__ import division from __future__ import print_function import os from paddle import fluid from ppdet.core.workspace import load_config, merge_config, create from ppdet.modeling.model_input import create_feed from ppdet.utils.cli import ArgsParser import ppdet.utils.checkpoint as checkpoint import logging FORMAT = '%(asctime)s-%(levelname)s: %(message)s' logging.basicConfig(level=logging.INFO, format=FORMAT) logger = logging.getLogger(__name__) def prune_feed_vars(feeded_var_names, target_vars, prog): """ Filter out feed variables which are not in program, pruned feed variables are only used in post processing on model output, which are not used in program, such as im_id to identify image order, im_shape to clip bbox in image. """ exist_var_names = [] prog = prog.clone() prog = prog._prune(targets=target_vars) global_block = prog.global_block() for name in feeded_var_names: try: v = global_block.var(name) exist_var_names.append(str(v.name)) except Exception: logger.info('save_inference_model pruned unused feed ' 'variables {}'.format(name)) pass return exist_var_names def save_infer_model(FLAGS, exe, feed_vars, test_fetches, infer_prog): cfg_name = os.path.basename(FLAGS.config).split('.')[0] save_dir = os.path.join(FLAGS.output_dir, cfg_name) feed_var_names = [var.name for var in feed_vars.values()] target_vars = list(test_fetches.values()) feed_var_names = prune_feed_vars(feed_var_names, target_vars, infer_prog) logger.info("Export inference model to {}, input: {}, output: " "{}...".format(save_dir, feed_var_names, [str(var.name) for var in target_vars])) fluid.io.save_inference_model( save_dir, feeded_var_names=feed_var_names, target_vars=target_vars, executor=exe, main_program=infer_prog, params_filename="__params__") def main(): cfg = load_config(FLAGS.config) if 'architecture' in cfg: main_arch = cfg.architecture else: raise ValueError("'architecture' not specified in config file.") merge_config(FLAGS.opt) if 'test_feed' not in cfg: test_feed = create(main_arch + 'TestFeed') else: test_feed = create(cfg.test_feed) # Use CPU for exporting inference model instead of GPU place = fluid.CPUPlace() exe = fluid.Executor(place) model = create(main_arch) startup_prog = fluid.Program() infer_prog = fluid.Program() with fluid.program_guard(infer_prog, startup_prog): with fluid.unique_name.guard(): _, feed_vars = create_feed(test_feed, iterable=True) test_fetches = model.test(feed_vars) infer_prog = infer_prog.clone(True) exe.run(startup_prog) checkpoint.load_params(exe, infer_prog, cfg.weights) save_infer_model(FLAGS, exe, feed_vars, test_fetches, infer_prog) if __name__ == '__main__': parser = ArgsParser() parser.add_argument( "--output_dir", type=str, default="output", help="Directory for storing the output model files.") FLAGS = parser.parse_args() main()