/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #include #include #include "paddle/fluid/framework/op_registry.h" #include "paddle/fluid/framework/operator.h" template struct UniformGenerator { T min_, max_; unsigned int seed_; __host__ __device__ UniformGenerator(T min, T max, int seed) : min_(min), max_(max), seed_(seed) {} __host__ __device__ T operator()(const unsigned int n) const { thrust::minstd_rand rng; rng.seed(seed_); thrust::uniform_real_distribution dist(min_, max_); rng.discard(n); return dist(rng); } }; namespace paddle { namespace operators { using Tensor = framework::Tensor; template class SamplingIdKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& context) const override { const Tensor* input = context.Input("X"); const int batch_size = static_cast(input->dims()[0]); const int width = static_cast(input->dims()[1]); std::vector ins_vector; framework::TensorToVector(*input, context.device_context(), &ins_vector); unsigned int seed = static_cast(context.Attr("seed")); if (seed == 0) { std::random_device rd; seed = rd(); } T min = static_cast(context.Attr("min")); T max = static_cast(context.Attr("max")); std::vector ids(batch_size); for (size_t i = 0; i < batch_size; ++i) { T r = UniformGenerator(min, max, seed); int idx = width - 1; for (int j = 0; j < width; ++j) { if ((r -= ins_vector[i * width + j]) < 0) { idx = j; break; } } ids[i] = ins_vector[i * width + idx]; } std::vector out_dim; out_dim.push_back(static_cast(batch_size)); Tensor* output = context.Output("Out"); output->Resize(framework::make_ddim(out_dim)); output->mutable_data(context.GetPlace()); framework::TensorFromVector(ids, context.device_context(), output); } }; } // namespace operators } // namespace paddle REGISTER_OP_CPU_KERNEL(sampling_id, paddle::operators::SamplingIdKernel, paddle::operators::SamplingIdKernel);