architecture: FasterRCNN use_gpu: true max_iters: 8000 log_smooth_window: 20 save_dir: output snapshot_iter: 1000 pretrain_weights: https://paddlemodels.bj.bcebos.com/object_detection/faster_rcnn_r50_2x.tar metric: VOC map_type: 11point weights: output/faster_rcnn_r50_1x_fruit/model_final # 3 + 1 (background) num_classes: 4 finetune_exclude_pretrained_params: ['bbox_pred', 'cls_score'] FasterRCNN: backbone: ResNet rpn_head: RPNHead roi_extractor: RoIAlign bbox_head: BBoxHead bbox_assigner: BBoxAssigner ResNet: norm_type: affine_channel depth: 50 feature_maps: 4 freeze_at: 2 ResNetC5: depth: 50 norm_type: affine_channel RPNHead: anchor_generator: anchor_sizes: [32, 64, 128, 256, 512] aspect_ratios: [0.5, 1.0, 2.0] stride: [16.0, 16.0] variance: [1.0, 1.0, 1.0, 1.0] rpn_target_assign: rpn_batch_size_per_im: 256 rpn_fg_fraction: 0.5 rpn_negative_overlap: 0.3 rpn_positive_overlap: 0.7 rpn_straddle_thresh: 0.0 use_random: true train_proposal: min_size: 0.0 nms_thresh: 0.7 pre_nms_top_n: 12000 post_nms_top_n: 2000 test_proposal: min_size: 0.0 nms_thresh: 0.7 pre_nms_top_n: 6000 post_nms_top_n: 1000 RoIAlign: resolution: 14 sampling_ratio: 0 spatial_scale: 0.0625 BBoxAssigner: batch_size_per_im: 512 bbox_reg_weights: [0.1, 0.1, 0.2, 0.2] bg_thresh_hi: 0.5 bg_thresh_lo: 0.0 fg_fraction: 0.25 fg_thresh: 0.5 BBoxHead: head: ResNetC5 nms: keep_top_k: 100 nms_threshold: 0.5 score_threshold: 0.05 LearningRate: base_lr: 0.00001 schedulers: - !PiecewiseDecay gamma: 0.1 milestones: [6400, 7200] - !LinearWarmup start_factor: 0. steps: 100 OptimizerBuilder: optimizer: momentum: 0.9 type: Momentum regularizer: factor: 0.0005 type: L2 _READER_: 'faster_reader.yml' TrainReader: dataset: !VOCDataSet dataset_dir: dataset/fruit anno_path: train.txt with_background: true use_default_label: false worker_num: -1 use_process: false EvalReader: inputs_def: fields: ['image', 'im_info', 'im_id', 'im_shape', 'gt_bbox', 'gt_class', 'is_difficult'] dataset: !VOCDataSet dataset_dir: dataset/fruit anno_path: val.txt with_background: true use_default_label: false TestReader: batch_size: 1 dataset: !ImageFolder anno_path: dataset/fruit/label_list.txt use_default_label: false with_background: true