# Group Normalization ## Model Zoo | 骨架网络 | 网络类型 | 每张GPU图片个数 | 学习率策略 |推理时间(fps)| Box AP | Mask AP | 下载 | 配置文件 | | :------------- | :------------- | :-----------: | :------: | :--------: |:-----: | :-----: | :----: | :----: | | ResNet50-FPN | Faster | 1 | 2x | - | 41.9 | - | [下载链接](https://paddledet.bj.bcebos.com/models/faster_rcnn_r50_fpn_gn_2x_coco.pdparams) | [配置文件](https://github.com/PaddlePaddle/PaddleDetection/tree/master/dygraph/configs/gn/faster_rcnn_r50_fpn_gn_2x_coco.yml) | | ResNet50-FPN | Mask | 1 | 2x | - | 42.3 | 38.4 | [下载链接](https://paddledet.bj.bcebos.com/models/mask_rcnn_r50_fpn_gn_2x_coco.pdparams) | [配置文件](https://github.com/PaddlePaddle/PaddleDetection/tree/master/dygraph/configs/gn/mask_rcnn_r50_fpn_gn_2x_coco.yml) | **注意:** Faster R-CNN baseline仅使用 `2fc` head,而此处使用[`4conv1fc` head](https://arxiv.org/abs/1803.08494)(4层conv之间使用GN),并且FPN也使用GN,而对于Mask R-CNN是在mask head的4层conv之间也使用GN。 ## Citations ``` @inproceedings{wu2018group, title={Group Normalization}, author={Wu, Yuxin and He, Kaiming}, booktitle={Proceedings of the European Conference on Computer Vision (ECCV)}, year={2018} } ```