from __future__ import absolute_import from __future__ import division from __future__ import print_function import os, sys # add python path of PadleDetection to sys.path parent_path = os.path.abspath(os.path.join(__file__, *(['..'] * 2))) if parent_path not in sys.path: sys.path.append(parent_path) import time # ignore numba warning import warnings warnings.filterwarnings('ignore') import random import numpy as np import paddle from paddle.distributed import ParallelEnv from ppdet.core.workspace import load_config, merge_config, create from ppdet.utils.check import check_gpu, check_version, check_config from ppdet.utils.cli import ArgsParser from ppdet.utils.eval_utils import get_infer_results, eval_results from ppdet.data.reader import create_reader from ppdet.utils.checkpoint import load_dygraph_ckpt, save_dygraph_ckpt import logging FORMAT = '%(asctime)s-%(levelname)s: %(message)s' logging.basicConfig(level=logging.INFO, format=FORMAT) logger = logging.getLogger(__name__) def parse_args(): parser = ArgsParser() parser.add_argument( "--output_eval", default=None, type=str, help="Evaluation directory, default is current directory.") parser.add_argument( '--json_eval', action='store_true', default=False, help='') parser.add_argument( '--use_gpu', action='store_true', default=False, help='') args = parser.parse_args() return args def run(FLAGS, cfg): # Model main_arch = cfg.architecture model = create(cfg.architecture) # Init Model model = load_dygraph_ckpt(model, ckpt=cfg.weights) # Data Reader if FLAGS.use_gpu: devices_num = 1 else: devices_num = int(os.environ.get('CPU_NUM', 1)) eval_reader = create_reader( cfg.EvalDataset, cfg.EvalReader, devices_num=devices_num) # Run Eval outs_res = [] start_time = time.time() sample_num = 0 for iter_id, data in enumerate(eval_reader()): # forward model.eval() outs = model(data, cfg['EvalReader']['inputs_def']['fields'], 'infer') outs_res.append(outs) # log sample_num += len(data) if iter_id % 100 == 0: logger.info("Eval iter: {}".format(iter_id)) cost_time = time.time() - start_time logger.info('Total sample number: {}, averge FPS: {}'.format( sample_num, sample_num / cost_time)) eval_type = ['bbox'] if getattr(cfg, 'MaskHead', None): eval_type.append('mask') # Metric # TODO: support other metric dataset = cfg.EvalReader['dataset'] from ppdet.utils.coco_eval import get_category_info anno_file = dataset.get_anno() with_background = dataset.with_background use_default_label = dataset.use_default_label clsid2catid, catid2name = get_category_info(anno_file, with_background, use_default_label) infer_res = get_infer_results(outs_res, eval_type, clsid2catid) eval_results(infer_res, cfg.metric, anno_file) def main(): FLAGS = parse_args() cfg = load_config(FLAGS.config) merge_config(FLAGS.opt) check_config(cfg) check_gpu(cfg.use_gpu) check_version() place = paddle.CUDAPlace(ParallelEnv() .dev_id) if cfg.use_gpu else paddle.CPUPlace() paddle.disable_static(place) run(FLAGS, cfg) if __name__ == '__main__': main()