# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function import logging import tarfile import os import paddle import paddle.fluid.incubate.data_generator as data_generator logging.basicConfig() logger = logging.getLogger("paddle") logger.setLevel(logging.INFO) DATA_URL = "http://paddle-ctr-data.bj.bcebos.com/avazu_ctr_data.tgz" DATA_MD5 = "c11df99fbd14e53cd4bfa6567344b26e" """ avazu_ctr_data/train.txt avazu_ctr_data/infer.txt avazu_ctr_data/test.txt avazu_ctr_data/data.meta.txt """ def download_file(): file_name = "avazu_ctr_data" path = paddle.dataset.common.download(DATA_URL, file_name, DATA_MD5) dir_name = os.path.dirname(path) text_file_dir_name = os.path.join(dir_name, file_name) if not os.path.exists(text_file_dir_name): tar = tarfile.open(path, "r:gz") tar.extractall(dir_name) return text_file_dir_name def load_dnn_input_record(sent): return list(map(int, sent.split())) def load_lr_input_record(sent): res = [] for _ in [x.split(':') for x in sent.split()]: res.append(int(_[0])) return res class DatasetCtrReader(data_generator.MultiSlotDataGenerator): def generate_sample(self, line): def iter(): fs = line.strip().split('\t') dnn_input = load_dnn_input_record(fs[0]) lr_input = load_lr_input_record(fs[1]) click = [int(fs[2])] yield ("dnn_data", dnn_input), \ ("lr_data", lr_input), \ ("click", click) return iter def prepare_data(): """ load data meta info from path, return (dnn_input_dim, lr_input_dim) """ file_dir_name = download_file() meta_file_path = os.path.join(file_dir_name, 'data.meta.txt') train_file_path = os.path.join(file_dir_name, 'train.txt') with open(meta_file_path, "r") as f: lines = f.readlines() err_info = "wrong meta format" assert len(lines) == 2, err_info assert 'dnn_input_dim:' in lines[0] and 'lr_input_dim:' in lines[ 1], err_info res = map(int, [_.split(':')[1] for _ in lines]) res = list(res) dnn_input_dim = res[0] lr_input_dim = res[1] logger.info('dnn input dim: %d' % dnn_input_dim) logger.info('lr input dim: %d' % lr_input_dim) return dnn_input_dim, lr_input_dim, train_file_path if __name__ == "__main__": pairwise_reader = DatasetCtrReader() pairwise_reader.run_from_stdin()