# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import from __future__ import division from __future__ import print_function import os import numpy as np from collections import OrderedDict from paddleslim.dist.single_distiller import merge, l2_loss from paddleslim.prune import Pruner from paddleslim.analysis import flops from paddle import fluid from ppdet.core.workspace import load_config, merge_config, create from ppdet.data.reader import create_reader from ppdet.utils.eval_utils import parse_fetches, eval_results, eval_run from ppdet.utils.stats import TrainingStats from ppdet.utils.cli import ArgsParser from ppdet.utils.check import check_gpu import ppdet.utils.checkpoint as checkpoint import logging FORMAT = '%(asctime)s-%(levelname)s: %(message)s' logging.basicConfig(level=logging.INFO, format=FORMAT) logger = logging.getLogger(__name__) def split_distill(split_output_names, weight): """ Add fine grained distillation losses. Each loss is composed by distill_reg_loss, distill_cls_loss and distill_obj_loss """ student_var = [] for name in split_output_names: student_var.append(fluid.default_main_program().global_block().var( name)) s_x0, s_y0, s_w0, s_h0, s_obj0, s_cls0 = student_var[0:6] s_x1, s_y1, s_w1, s_h1, s_obj1, s_cls1 = student_var[6:12] s_x2, s_y2, s_w2, s_h2, s_obj2, s_cls2 = student_var[12:18] teacher_var = [] for name in split_output_names: teacher_var.append(fluid.default_main_program().global_block().var( 'teacher_' + name)) t_x0, t_y0, t_w0, t_h0, t_obj0, t_cls0 = teacher_var[0:6] t_x1, t_y1, t_w1, t_h1, t_obj1, t_cls1 = teacher_var[6:12] t_x2, t_y2, t_w2, t_h2, t_obj2, t_cls2 = teacher_var[12:18] def obj_weighted_reg(sx, sy, sw, sh, tx, ty, tw, th, tobj): loss_x = fluid.layers.sigmoid_cross_entropy_with_logits( sx, fluid.layers.sigmoid(tx)) loss_y = fluid.layers.sigmoid_cross_entropy_with_logits( sy, fluid.layers.sigmoid(ty)) loss_w = fluid.layers.abs(sw - tw) loss_h = fluid.layers.abs(sh - th) loss = fluid.layers.sum([loss_x, loss_y, loss_w, loss_h]) weighted_loss = fluid.layers.reduce_mean(loss * fluid.layers.sigmoid(tobj)) return weighted_loss def obj_weighted_cls(scls, tcls, tobj): loss = fluid.layers.sigmoid_cross_entropy_with_logits( scls, fluid.layers.sigmoid(tcls)) weighted_loss = fluid.layers.reduce_mean( fluid.layers.elementwise_mul( loss, fluid.layers.sigmoid(tobj), axis=0)) return weighted_loss def obj_loss(sobj, tobj): obj_mask = fluid.layers.cast(tobj > 0., dtype="float32") obj_mask.stop_gradient = True loss = fluid.layers.reduce_mean( fluid.layers.sigmoid_cross_entropy_with_logits(sobj, obj_mask)) return loss distill_reg_loss0 = obj_weighted_reg(s_x0, s_y0, s_w0, s_h0, t_x0, t_y0, t_w0, t_h0, t_obj0) distill_reg_loss1 = obj_weighted_reg(s_x1, s_y1, s_w1, s_h1, t_x1, t_y1, t_w1, t_h1, t_obj1) distill_reg_loss2 = obj_weighted_reg(s_x2, s_y2, s_w2, s_h2, t_x2, t_y2, t_w2, t_h2, t_obj2) distill_reg_loss = fluid.layers.sum( [distill_reg_loss0, distill_reg_loss1, distill_reg_loss2]) distill_cls_loss0 = obj_weighted_cls(s_cls0, t_cls0, t_obj0) distill_cls_loss1 = obj_weighted_cls(s_cls1, t_cls1, t_obj1) distill_cls_loss2 = obj_weighted_cls(s_cls2, t_cls2, t_obj2) distill_cls_loss = fluid.layers.sum( [distill_cls_loss0, distill_cls_loss1, distill_cls_loss2]) distill_obj_loss0 = obj_loss(s_obj0, t_obj0) distill_obj_loss1 = obj_loss(s_obj1, t_obj1) distill_obj_loss2 = obj_loss(s_obj2, t_obj2) distill_obj_loss = fluid.layers.sum( [distill_obj_loss0, distill_obj_loss1, distill_obj_loss2]) loss = (distill_reg_loss + distill_cls_loss + distill_obj_loss) * weight return loss def main(): env = os.environ cfg = load_config(FLAGS.config) if 'architecture' in cfg: main_arch = cfg.architecture else: raise ValueError("'architecture' not specified in config file.") merge_config(FLAGS.opt) if 'log_iter' not in cfg: cfg.log_iter = 20 # check if set use_gpu=True in paddlepaddle cpu version check_gpu(cfg.use_gpu) if cfg.use_gpu: devices_num = fluid.core.get_cuda_device_count() else: devices_num = int(os.environ.get('CPU_NUM', 1)) if 'FLAGS_selected_gpus' in env: device_id = int(env['FLAGS_selected_gpus']) else: device_id = 0 place = fluid.CUDAPlace(device_id) if cfg.use_gpu else fluid.CPUPlace() exe = fluid.Executor(place) # build program model = create(main_arch) inputs_def = cfg['TrainReader']['inputs_def'] train_feed_vars, train_loader = model.build_inputs(**inputs_def) train_fetches = model.train(train_feed_vars) loss = train_fetches['loss'] start_iter = 0 train_reader = create_reader(cfg.TrainReader, (cfg.max_iters - start_iter) * devices_num, cfg) train_loader.set_sample_list_generator(train_reader, place) eval_prog = fluid.Program() with fluid.program_guard(eval_prog, fluid.default_startup_program()): with fluid.unique_name.guard(): model = create(main_arch) inputs_def = cfg['EvalReader']['inputs_def'] test_feed_vars, eval_loader = model.build_inputs(**inputs_def) fetches = model.eval(test_feed_vars) eval_prog = eval_prog.clone(True) eval_reader = create_reader(cfg.EvalReader) eval_loader.set_sample_list_generator(eval_reader, place) teacher_cfg = load_config(FLAGS.teacher_config) merge_config(FLAGS.opt) teacher_arch = teacher_cfg.architecture teacher_program = fluid.Program() teacher_startup_program = fluid.Program() with fluid.program_guard(teacher_program, teacher_startup_program): with fluid.unique_name.guard(): teacher_feed_vars = OrderedDict() for name, var in train_feed_vars.items(): teacher_feed_vars[name] = teacher_program.global_block( )._clone_variable( var, force_persistable=False) model = create(teacher_arch) train_fetches = model.train(teacher_feed_vars) teacher_loss = train_fetches['loss'] exe.run(teacher_startup_program) assert FLAGS.teacher_pretrained, "teacher_pretrained should be set" checkpoint.load_params(exe, teacher_program, FLAGS.teacher_pretrained) teacher_program = teacher_program.clone(for_test=True) data_name_map = { 'target0': 'target0', 'target1': 'target1', 'target2': 'target2', 'image': 'image', 'gt_bbox': 'gt_bbox', 'gt_class': 'gt_class', 'gt_score': 'gt_score' } merge(teacher_program, fluid.default_main_program(), data_name_map, place) yolo_output_names = [ 'strided_slice_0.tmp_0', 'strided_slice_1.tmp_0', 'strided_slice_2.tmp_0', 'strided_slice_3.tmp_0', 'strided_slice_4.tmp_0', 'transpose_0.tmp_0', 'strided_slice_5.tmp_0', 'strided_slice_6.tmp_0', 'strided_slice_7.tmp_0', 'strided_slice_8.tmp_0', 'strided_slice_9.tmp_0', 'transpose_2.tmp_0', 'strided_slice_10.tmp_0', 'strided_slice_11.tmp_0', 'strided_slice_12.tmp_0', 'strided_slice_13.tmp_0', 'strided_slice_14.tmp_0', 'transpose_4.tmp_0' ] assert cfg.use_fine_grained_loss, \ "Only support use_fine_grained_loss=True, Please set it in config file or '-o use_fine_grained_loss=true'" distill_loss = split_distill(yolo_output_names, 1000) loss = distill_loss + loss lr_builder = create('LearningRate') optim_builder = create('OptimizerBuilder') lr = lr_builder() opt = optim_builder(lr) opt.minimize(loss) exe.run(fluid.default_startup_program()) checkpoint.load_params(exe, fluid.default_main_program(), cfg.pretrain_weights) assert FLAGS.pruned_params is not None, \ "FLAGS.pruned_params is empty!!! Please set it by '--pruned_params' option." pruned_params = FLAGS.pruned_params.strip().split(",") logger.info("pruned params: {}".format(pruned_params)) pruned_ratios = [float(n) for n in FLAGS.pruned_ratios.strip().split(",")] logger.info("pruned ratios: {}".format(pruned_ratios)) assert len(pruned_params) == len(pruned_ratios), \ "The length of pruned params and pruned ratios should be equal." assert pruned_ratios > [0] * len(pruned_ratios) and pruned_ratios < [1] * len(pruned_ratios), \ "The elements of pruned ratios should be in range (0, 1)." pruner = Pruner() distill_prog = pruner.prune( fluid.default_main_program(), fluid.global_scope(), params=pruned_params, ratios=pruned_ratios, place=place, only_graph=False)[0] base_flops = flops(eval_prog) eval_prog = pruner.prune( eval_prog, fluid.global_scope(), params=pruned_params, ratios=pruned_ratios, place=place, only_graph=True)[0] pruned_flops = flops(eval_prog) logger.info("FLOPs -{}; total FLOPs: {}; pruned FLOPs: {}".format( float(base_flops - pruned_flops) / base_flops, base_flops, pruned_flops)) build_strategy = fluid.BuildStrategy() build_strategy.fuse_all_reduce_ops = False build_strategy.fuse_all_optimizer_ops = False build_strategy.fuse_elewise_add_act_ops = True # only enable sync_bn in multi GPU devices sync_bn = getattr(model.backbone, 'norm_type', None) == 'sync_bn' build_strategy.sync_batch_norm = sync_bn and devices_num > 1 \ and cfg.use_gpu exec_strategy = fluid.ExecutionStrategy() # iteration number when CompiledProgram tries to drop local execution scopes. # Set it to be 1 to save memory usages, so that unused variables in # local execution scopes can be deleted after each iteration. exec_strategy.num_iteration_per_drop_scope = 1 parallel_main = fluid.CompiledProgram(distill_prog).with_data_parallel( loss_name=loss.name, build_strategy=build_strategy, exec_strategy=exec_strategy) compiled_eval_prog = fluid.compiler.CompiledProgram(eval_prog) # parse eval fetches extra_keys = [] if cfg.metric == 'COCO': extra_keys = ['im_info', 'im_id', 'im_shape'] if cfg.metric == 'VOC': extra_keys = ['gt_bbox', 'gt_class', 'is_difficult'] eval_keys, eval_values, eval_cls = parse_fetches(fetches, eval_prog, extra_keys) # whether output bbox is normalized in model output layer is_bbox_normalized = False if hasattr(model, 'is_bbox_normalized') and \ callable(model.is_bbox_normalized): is_bbox_normalized = model.is_bbox_normalized() map_type = cfg.map_type if 'map_type' in cfg else '11point' best_box_ap_list = [0.0, 0] #[map, iter] cfg_name = os.path.basename(FLAGS.config).split('.')[0] save_dir = os.path.join(cfg.save_dir, cfg_name) train_loader.start() for step_id in range(start_iter, cfg.max_iters): teacher_loss_np, distill_loss_np, loss_np, lr_np = exe.run( parallel_main, fetch_list=[ 'teacher_' + teacher_loss.name, distill_loss.name, loss.name, lr.name ]) if step_id % cfg.log_iter == 0: logger.info( "step {} lr {:.6f}, loss {:.6f}, distill_loss {:.6f}, teacher_loss {:.6f}". format(step_id, lr_np[0], loss_np[0], distill_loss_np[0], teacher_loss_np[0])) if step_id % cfg.snapshot_iter == 0 and step_id != 0 or step_id == cfg.max_iters - 1: save_name = str( step_id) if step_id != cfg.max_iters - 1 else "model_final" checkpoint.save(exe, distill_prog, os.path.join(save_dir, save_name)) # eval results = eval_run(exe, compiled_eval_prog, eval_loader, eval_keys, eval_values, eval_cls) resolution = None box_ap_stats = eval_results(results, cfg.metric, cfg.num_classes, resolution, is_bbox_normalized, FLAGS.output_eval, map_type, cfg['EvalReader']['dataset']) if box_ap_stats[0] > best_box_ap_list[0]: best_box_ap_list[0] = box_ap_stats[0] best_box_ap_list[1] = step_id checkpoint.save(exe, distill_prog, os.path.join("./", "best_model")) logger.info("Best test box ap: {}, in step: {}".format( best_box_ap_list[0], best_box_ap_list[1])) train_loader.reset() if __name__ == '__main__': parser = ArgsParser() parser.add_argument( "-t", "--teacher_config", default=None, type=str, help="Config file of teacher architecture.") parser.add_argument( "--teacher_pretrained", default=None, type=str, help="Whether to use pretrained model.") parser.add_argument( "--output_eval", default=None, type=str, help="Evaluation directory, default is current directory.") parser.add_argument( "-p", "--pruned_params", default=None, type=str, help="The parameters to be pruned when calculating sensitivities.") parser.add_argument( "--pruned_ratios", default=None, type=str, help="The ratios pruned iteratively for each parameter when calculating sensitivities." ) FLAGS = parser.parse_args() main()