从源码编译
======================
.. _requirements:
需要的软硬件
----------------
为了编译PaddlePaddle,我们需要
1. 一台电脑,可以装的是 Linux, Windows 或者 MacOS 操作系统
2. Docker
不需要依赖其他任何软件了。即便是 Python 和 GCC 都不需要,因为我们会把所有编译工具都安装进一个 Docker 镜像里。
.. _build_step:
编译方法
----------------
PaddlePaddle需要使用Docker环境完成编译,这样可以免去单独安装编译依赖的步骤,可选的不同编译环境Docker镜像
可以在 `这里 `_ 找到,您也可以
在 `这里 `_ 找到 paddle_manylinux_devel
镜像的编译以及使用方法。或者参考下述可选步骤,从源码中构建用于编译PaddlePaddle的Docker镜像。
如果您选择不使用Docker镜像,则需要在本机安装下面章节列出的 `编译依赖`_ 之后才能开始编译的步骤。
编译PaddlePaddle,需要执行:
.. code-block:: bash
# 1. 获取源码
git clone https://github.com/PaddlePaddle/Paddle.git
cd Paddle
# 2. 可选步骤:源码中构建用于编译PaddlePaddle的Docker镜像
docker build -t paddle:dev .
# 3. 执行下面的命令编译CPU-Only的二进制
docker run -it -v $PWD:/paddle -e "WITH_GPU=OFF" -e "WITH_TESTING=OFF" paddlepaddle/paddle_manylinux_devel:cuda8.0_cudnn5 bash -x /paddle/paddle/scripts/docker/build.sh
# 4. 或者也可以使用为上述可选步骤构建的镜像(必须先执行第2步)
docker run -it -v $PWD:/paddle -e "WITH_GPU=OFF" -e "WITH_TESTING=OFF" paddle:dev
注:上述命令把当前目录(源码树根目录)映射为 container 里的 :code:`/paddle` 目录。如果使用自行
构建的镜像(上述第4步)会执行 :code:`Dockerfile` 描述的默认入口程序 :code:`build.sh` 可以省略步骤3中
最后的执行脚本的命令。
编译完成后会在build/python/dist目录下生成输出的whl包,可以选在在当前机器安装也可以拷贝到目标机器安装:
.. code-block:: bash
pip install build/python/dist/*.whl
如果机器中已经安装过PaddlePaddle,有两种方法:
.. code-block:: bash
1. 先卸载之前的版本,再重新安装
pip uninstall paddlepaddle
pip install build/python/dist/*.whl
2. 直接升级到更新的版本
pip install build/python/dist/*.whl -U
.. _run_test:
执行单元测试
----------------
如果您期望在编译完成后立即执行所有的单元测试,可以按照下面的方法:
设置 :code:`RUN_TEST=ON` 和 :code:`WITH_TESTING=ON` 就会在完成编译之后,立即执行单元测试。
开启 :code:`WITH_GPU=ON` 可以指定同时执行GPU上的单元测试。
.. code-block:: bash
docker run -it -v $PWD:/paddle -e "WITH_GPU=OFF" -e "WITH_TESTING=ON" -e "RUN_TEST=ON" paddlepaddle/paddle_manylinux_devel:cuda8.0_cudnn5 bash -x /paddle/paddle/scripts/docker/build.sh
如果期望执行其中一个单元测试,(比如 :code:`test_sum_op` ):
.. code-block:: bash
docker run -it -v $PWD:/paddle -e "WITH_GPU=OFF" -e "WITH_TESTING=ON" -e "RUN_TEST=OFF" paddlepaddle/paddle_manylinux_devel:cuda8.0_cudnn5 /bin/bash
bash /paddle/paddle/scripts/docker/build.sh
cd /paddle/build
ctest -R test_sum_op -V
.. _faq_docker:
常见问题
----------------
- 什么是 Docker?
如果您没有听说 Docker,可以把它想象为一个类似 virtualenv 的系统,但是虚拟的不仅仅是 Python 的运行环境。
- Docker 还是虚拟机?
有人用虚拟机来类比 Docker。需要强调的是:Docker 不会虚拟任何硬件,Docker container 里运行的编译工具实际上都是在本机的 CPU 和操作系统上直接运行的,性能和把编译工具安装在本机运行一样。
- 为什么用 Docker?
把工具和配置都安装在一个 Docker image 里可以标准化编译环境。这样如果遇到问题,其他人可以复现问题以便帮助。
另外,对于习惯使用Windows和MacOS的开发者来说,使用Docker就不用配置交叉编译环境了。
- 我可以选择不用Docker吗?
当然可以。大家可以用把开发工具安装进入 Docker image 一样的方式,把这些工具安装到本机。这篇文档介绍基于 Docker 的开发流程,是因为这个流程比其他方法都更简便。
- 学习 Docker 有多难?
理解 Docker 并不难,大概花十分钟看一下[这篇文章](https://zhuanlan.zhihu.com/p/19902938)。这可以帮您省掉花一小时安装和配置各种开发工具,以及切换机器时需要新安装的辛苦。别忘了 PaddlePaddle 更新可能导致需要新的开发工具。更别提简化问题复现带来的好处了。
- 我可以用 IDE 吗?
当然可以,因为源码就在本机上。IDE 默认调用 make 之类的程序来编译源码,我们只需要配置 IDE 来调用 Docker 命令编译源码即可。
很多 PaddlePaddle 开发者使用 Emacs。他们在自己的 `~/.emacs` 配置文件里加两行
```emacs
(global-set-key "\C-cc" 'compile)
(setq compile-command
"docker run --rm -it -v $(git rev-parse --show-toplevel):/paddle paddle:dev")
```
就可以按 `Ctrl-C` 和 `c` 键来启动编译了。
- 可以并行编译吗?
是的。我们的 Docker image 运行一个 [Bash 脚本](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/scripts/docker/build.sh)。这个脚本调用 `make -j$(nproc)` 来启动和 CPU 核一样多的进程来并行编译。
- Docker 需要 sudo
如果用自己的电脑开发,自然也就有管理员权限(sudo)了。如果用公用的电脑开发,需要请管理员安装和配置好 Docker。此外,PaddlePaddle 项目在努力开始支持其他不需要 sudo 的集装箱技术,比如 rkt。
- 在 Windows/MacOS 上编译很慢
Docker 在 Windows 和 MacOS 都可以运行。不过实际上是运行在一个 Linux 虚拟机上。可能需要注意给这个虚拟机多分配一些 CPU 和内存,以保证编译高效。具体做法请参考[这个issue](https://github.com/PaddlePaddle/Paddle/issues/627)。
- 磁盘不够
本文中的例子里,`docker run` 命令里都用了 `--rm` 参数,这样保证运行结束之后的 containers 不会保留在磁盘上。可以用 `docker ps -a` 命令看到停止后但是没有删除的 containers。`docker build` 命令有时候会产生一些中间结果,是没有名字的 images,也会占用磁盘。可以参考[这篇文章](https://zaiste.net/posts/removing_docker_containers/)来清理这些内容。
.. _compile_deps:
附录:编译依赖
----------------
PaddlePaddle编译需要使用到下面的依赖(包含但不限于),其他的依赖软件,会自动在编译时下载。
.. csv-table:: PaddlePaddle编译依赖
:header: "依赖", "版本", "说明"
:widths: 10, 15, 30
"CMake", ">=3.2", ""
"GCC", "4.8.2", "推荐使用CentOS的devtools2"
"Python", "2.7.x", "依赖libpython2.7.so"
"pip", ">=9.0", ""
"numpy", "", ""
"SWIG", ">=2.0", ""
"Go", ">=1.8", "可选"
.. _build_options:
附录:编译选项
----------------
PaddlePaddle的编译选项,包括生成CPU/GPU二进制文件、链接何种BLAS库等。
用户可在调用cmake的时候设置它们,详细的cmake使用方法可以参考
`官方文档 `_ 。
在cmake的命令行中,通过使用 ``-D`` 命令设置该类编译选项,例如:
.. code-block:: bash
cmake .. -DWITH_GPU=OFF
.. csv-table:: 编译选项说明
:header: "选项", "说明", "默认值"
:widths: 1, 7, 2
"WITH_GPU", "是否支持GPU", "ON"
"WITH_C_API", "是否仅编译CAPI", "OFF"
"WITH_DOUBLE", "是否使用双精度浮点数", "OFF"
"WITH_DSO", "是否运行时动态加载CUDA动态库,而非静态加载CUDA动态库。", "ON"
"WITH_AVX", "是否编译含有AVX指令集的PaddlePaddle二进制文件", "ON"
"WITH_PYTHON", "是否内嵌PYTHON解释器", "ON"
"WITH_STYLE_CHECK", "是否编译时进行代码风格检查", "ON"
"WITH_TESTING", "是否开启单元测试", "OFF"
"WITH_DOC", "是否编译中英文文档", "OFF"
"WITH_SWIG_PY", "是否编译PYTHON的SWIG接口,该接口可用于预测和定制化训练", "Auto"
"WITH_GOLANG", "是否编译go语言的可容错parameter server", "OFF"
"WITH_MKL", "是否使用MKL数学库,如果为否则是用OpenBLAS", "ON"
BLAS
+++++
PaddlePaddle支持 `MKL `_ 和
`OpenBlAS `_ 两种BLAS库。默认使用MKL。如果使用MKL并且机器含有AVX2指令集,
还会下载MKL-DNN数学库,详细参考 `这里 `_ 。
如果关闭MKL,则会使用OpenBLAS作为BLAS库。
CUDA/cuDNN
+++++++++++
PaddlePaddle在编译时/运行时会自动找到系统中安装的CUDA和cuDNN库进行编译和执行。
使用参数 :code:`-DCUDA_ARCH_NAME=Auto` 可以指定开启自动检测SM架构,加速编译。
PaddlePaddle可以使用cuDNN v5.1之后的任何一个版本来编译运行,但尽量请保持编译和运行使用的cuDNN是同一个版本。
我们推荐使用最新版本的cuDNN。
编译选项的设置
++++++++++++++
PaddePaddle通过编译时指定路径来实现引用各种BLAS/CUDA/cuDNN库。cmake编译时,首先在系统路径( :code:`/usr/lib:/usr/local/lib` )中搜索这几个库,同时也会读取相关路径变量来进行搜索。 通过使用 ``-D`` 命令可以设置,例如
.. code-block:: bash
cmake .. -DWITH_GPU=ON -DWITH_TESTING=OFF -DCUDNN_ROOT=/opt/cudnnv5
**注意:这几个编译选项的设置,只在第一次cmake的时候有效。如果之后想要重新设置,推荐清理整个编译目录(** :code:`rm -rf` )**后,再指定。**