// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #pragma once #include #include #include #include "paddle/fluid/inference/paddle_inference_api.h" namespace paddle { namespace demo { static void split(const std::string& str, char sep, std::vector* pieces) { pieces->clear(); if (str.empty()) { return; } size_t pos = 0; size_t next = str.find(sep, pos); while (next != std::string::npos) { pieces->push_back(str.substr(pos, next - pos)); pos = next + 1; next = str.find(sep, pos); } if (!str.substr(pos).empty()) { pieces->push_back(str.substr(pos)); } } /* * Get a summary of a PaddleTensor content. */ static std::string SummaryTensor(const PaddleTensor& tensor) { std::stringstream ss; int num_elems = tensor.data.length() / PaddleDtypeSize(tensor.dtype); ss << "data[:10]\t"; switch (tensor.dtype) { case PaddleDType::INT64: { for (int i = 0; i < std::min(num_elems, 10); i++) { ss << static_cast(tensor.data.data())[i] << " "; } break; } case PaddleDType::FLOAT32: for (int i = 0; i < std::min(num_elems, 10); i++) { ss << static_cast(tensor.data.data())[i] << " "; } break; } return ss.str(); } } // namespace demo } // namespace paddle