# VisDrone-DET 检测模型 PaddleDetection团队提供了针对VisDrone-DET小目标数航拍场景的基于PP-YOLOE的检测模型,用户可以下载模型进行使用。整理后的COCO格式VisDrone-DET数据集[下载链接](https://bj.bcebos.com/v1/paddledet/data/smalldet/visdrone.zip),检测其中的10类,包括 `pedestrian(1), people(2), bicycle(3), car(4), van(5), truck(6), tricycle(7), awning-tricycle(8), bus(9), motor(10)`,原始数据集[下载链接](https://github.com/VisDrone/VisDrone-Dataset)。 **注意:** - VisDrone-DET数据集包括train集6471张,val集548张,test_dev集1610张,test-challenge集1580张(未开放检测框标注),前三者均有开放检测框标注。 - 模型均只使用train集训练,在val集和test_dev集上验证精度,test_dev集图片数较多,精度参考性较高。 ## 原图训练: | 模型 | COCOAPI mAPval
0.5:0.95 | COCOAPI mAPval
0.5 | COCOAPI mAPtest_dev
0.5:0.95 | COCOAPI mAPtest_dev
0.5 | MatlabAPI mAPtest_dev
0.5:0.95 | MatlabAPI mAPtest_dev
0.5 | 下载 | 配置文件 | |:---------|:------:|:------:| :----: | :------:| :------: | :------:| :----: | :------:| |PP-YOLOE-s| 23.5 | 39.9 | 19.4 | 33.6 | 23.68 | 40.66 | [下载链接](https://paddledet.bj.bcebos.com/models/ppyoloe_crn_s_80e_visdrone.pdparams) | [配置文件](./ppyoloe_crn_s_80e_visdrone.yml) | |PP-YOLOE-P2-Alpha-s| 24.4 | 41.6 | 20.1 | 34.7 | 24.55 | 42.19 | [下载链接](https://paddledet.bj.bcebos.com/models/ppyoloe_crn_s_p2_alpha_80e_visdrone.pdparams) | [配置文件](./ppyoloe_crn_s_p2_alpha_80e_visdrone.yml) | |PP-YOLOE-l| 29.2 | 47.3 | 23.5 | 39.1 | 28.00 | 46.20 | [下载链接](https://paddledet.bj.bcebos.com/models/ppyoloe_crn_l_80e_visdrone.pdparams) | [配置文件](./ppyoloe_crn_l_80e_visdrone.yml) | |PP-YOLOE-P2-Alpha-l| 30.1 | 48.9 | 24.3 | 40.8 | 28.47 | 48.16 | [下载链接](https://paddledet.bj.bcebos.com/models/ppyoloe_crn_l_p2_alpha_80e_visdrone.pdparams) | [配置文件](./ppyoloe_crn_l_p2_alpha_80e_visdrone.yml) | |PP-YOLOE-Alpha-largesize-l| 41.9 | 65.0 | 32.3 | 53.0 | 37.13 | 61.15 | [下载链接](https://paddledet.bj.bcebos.com/models/ppyoloe_crn_l_alpha_largesize_80e_visdrone.pdparams) | [配置文件](./ppyoloe_crn_l_alpha_largesize_80e_visdrone.yml) | |PP-YOLOE-P2-Alpha-largesize-l| 41.3 | 64.5 | 32.4 | 53.1 | 37.49 | 51.54 | [下载链接](https://paddledet.bj.bcebos.com/models/ppyoloe_crn_l_p2_alpha_largesize_80e_visdrone.pdparams) | [配置文件](./ppyoloe_crn_l_p2_alpha_largesize_80e_visdrone.yml) | |PP-YOLOE-plus-largesize-l | 43.3 | 66.7 | 33.5 | 54.7 | 38.24 | 62.76 | [下载链接](https://paddledet.bj.bcebos.com/models/ppyoloe_plus_crn_l_largesize_80e_visdrone.pdparams) | [配置文件](./ppyoloe_plus_crn_l_largesize_80e_visdrone.yml) | ## 原图评估和拼图评估对比: | 模型 | 数据集 | SLICE_SIZE | OVERLAP_RATIO | 类别数 | mAPval
0.5:0.95 | APval
0.5 | 下载链接 | 配置文件 | |:---------|:---------------:|:---------------:|:---------------:|:------:|:-----------------------:|:-------------------:|:---------:| :-----: | |PP-YOLOE-l| VisDrone-DET| 640 | 0.25 | 10 | 29.7 | 48.5 | [下载链接](https://bj.bcebos.com/v1/paddledet/models/ppyoloe_crn_l_80e_sliced_visdrone_640_025.pdparams) | [配置文件](../smalldet/ppyoloe_crn_l_80e_sliced_visdrone_640_025.yml) | |PP-YOLOE-l (Assembled)| VisDrone-DET| 640 | 0.25 | 10 | 37.2 | 59.4 | [下载链接](https://bj.bcebos.com/v1/paddledet/models/ppyoloe_crn_l_80e_sliced_visdrone_640_025.pdparams) | [配置文件](../smalldet/ppyoloe_crn_l_80e_sliced_visdrone_640_025.yml) | **注意:** - PP-YOLOE模型训练过程中使用8 GPUs进行混合精度训练,如果**GPU卡数**或者**batch size**发生了改变,你需要按照公式 **lrnew = lrdefault * (batch_sizenew * GPU_numbernew) / (batch_sizedefault * GPU_numberdefault)** 调整学习率。 - 具体使用教程请参考[ppyoloe](../ppyoloe#getting-start)。 - P2表示增加P2层(1/4下采样层)的特征,共输出4个PPYOLOEHead。 - Alpha表示对CSPResNet骨干网络增加可一个学习权重参数Alpha参与训练。 - largesize表示使用以1600尺度为基础的多尺度训练和1920尺度预测,相应的训练batch_size也减小,以速度来换取高精度。 - MatlabAPI测试是使用官网评测工具[VisDrone2018-DET-toolkit](https://github.com/VisDrone/VisDrone2018-DET-toolkit)。 - 切图训练模型的配置文件及训练相关流程请参照[smalldet](../smalldet)。 ## 引用 ``` @ARTICLE{9573394, author={Zhu, Pengfei and Wen, Longyin and Du, Dawei and Bian, Xiao and Fan, Heng and Hu, Qinghua and Ling, Haibin}, journal={IEEE Transactions on Pattern Analysis and Machine Intelligence}, title={Detection and Tracking Meet Drones Challenge}, year={2021}, volume={}, number={}, pages={1-1}, doi={10.1109/TPAMI.2021.3119563} } ```