# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import from __future__ import division from __future__ import print_function import os, sys # add python path of PadleDetection to sys.path parent_path = os.path.abspath(os.path.join(__file__, *(['..'] * 3))) if parent_path not in sys.path: sys.path.append(parent_path) import time import numpy as np import datetime from collections import deque from paddleslim.prune import Pruner from paddleslim.analysis import flops from paddle import fluid from ppdet.experimental import mixed_precision_context from ppdet.core.workspace import load_config, merge_config, create from ppdet.data.reader import create_reader from ppdet.utils import dist_utils from ppdet.utils.eval_utils import parse_fetches, eval_run, eval_results from ppdet.utils.stats import TrainingStats from ppdet.utils.cli import ArgsParser from ppdet.utils.check import check_gpu, check_version, check_config import ppdet.utils.checkpoint as checkpoint import logging FORMAT = '%(asctime)s-%(levelname)s: %(message)s' logging.basicConfig(level=logging.INFO, format=FORMAT) logger = logging.getLogger(__name__) def main(): env = os.environ FLAGS.dist = 'PADDLE_TRAINER_ID' in env and 'PADDLE_TRAINERS_NUM' in env if FLAGS.dist: trainer_id = int(env['PADDLE_TRAINER_ID']) import random local_seed = (99 + trainer_id) random.seed(local_seed) np.random.seed(local_seed) cfg = load_config(FLAGS.config) merge_config(FLAGS.opt) check_config(cfg) # check if set use_gpu=True in paddlepaddle cpu version check_gpu(cfg.use_gpu) # check if paddlepaddle version is satisfied check_version() main_arch = cfg.architecture if cfg.use_gpu: devices_num = fluid.core.get_cuda_device_count() else: devices_num = int(os.environ.get('CPU_NUM', 1)) if 'FLAGS_selected_gpus' in env: device_id = int(env['FLAGS_selected_gpus']) else: device_id = 0 place = fluid.CUDAPlace(device_id) if cfg.use_gpu else fluid.CPUPlace() exe = fluid.Executor(place) lr_builder = create('LearningRate') optim_builder = create('OptimizerBuilder') # build program startup_prog = fluid.Program() train_prog = fluid.Program() with fluid.program_guard(train_prog, startup_prog): with fluid.unique_name.guard(): model = create(main_arch) if FLAGS.fp16: assert (getattr(model.backbone, 'norm_type', None) != 'affine_channel'), \ '--fp16 currently does not support affine channel, ' \ ' please modify backbone settings to use batch norm' with mixed_precision_context(FLAGS.loss_scale, FLAGS.fp16) as ctx: inputs_def = cfg['TrainReader']['inputs_def'] feed_vars, train_loader = model.build_inputs(**inputs_def) train_fetches = model.train(feed_vars) loss = train_fetches['loss'] if FLAGS.fp16: loss *= ctx.get_loss_scale_var() lr = lr_builder() optimizer = optim_builder(lr) optimizer.minimize(loss) if FLAGS.fp16: loss /= ctx.get_loss_scale_var() # parse train fetches train_keys, train_values, _ = parse_fetches(train_fetches) train_values.append(lr) if FLAGS.print_params: param_delimit_str = '-' * 20 + "All parameters in current graph" + '-' * 20 print(param_delimit_str) for block in train_prog.blocks: for param in block.all_parameters(): print("parameter name: {}\tshape: {}".format(param.name, param.shape)) print('-' * len(param_delimit_str)) return if FLAGS.eval: eval_prog = fluid.Program() with fluid.program_guard(eval_prog, startup_prog): with fluid.unique_name.guard(): model = create(main_arch) inputs_def = cfg['EvalReader']['inputs_def'] feed_vars, eval_loader = model.build_inputs(**inputs_def) fetches = model.eval(feed_vars) eval_prog = eval_prog.clone(True) eval_reader = create_reader(cfg.EvalReader) eval_loader.set_sample_list_generator(eval_reader, place) # parse eval fetches extra_keys = [] if cfg.metric == 'COCO': extra_keys = ['im_info', 'im_id', 'im_shape'] if cfg.metric == 'VOC': extra_keys = ['gt_bbox', 'gt_class', 'is_difficult'] if cfg.metric == 'WIDERFACE': extra_keys = ['im_id', 'im_shape', 'gt_bbox'] eval_keys, eval_values, eval_cls = parse_fetches(fetches, eval_prog, extra_keys) # compile program for multi-devices build_strategy = fluid.BuildStrategy() build_strategy.fuse_all_optimizer_ops = False build_strategy.fuse_elewise_add_act_ops = True # only enable sync_bn in multi GPU devices sync_bn = getattr(model.backbone, 'norm_type', None) == 'sync_bn' build_strategy.sync_batch_norm = sync_bn and devices_num > 1 \ and cfg.use_gpu exec_strategy = fluid.ExecutionStrategy() # iteration number when CompiledProgram tries to drop local execution scopes. # Set it to be 1 to save memory usages, so that unused variables in # local execution scopes can be deleted after each iteration. exec_strategy.num_iteration_per_drop_scope = 1 if FLAGS.dist: dist_utils.prepare_for_multi_process(exe, build_strategy, startup_prog, train_prog) exec_strategy.num_threads = 1 exe.run(startup_prog) fuse_bn = getattr(model.backbone, 'norm_type', None) == 'affine_channel' start_iter = 0 if cfg.pretrain_weights: checkpoint.load_params(exe, train_prog, cfg.pretrain_weights) pruned_params = FLAGS.pruned_params assert FLAGS.pruned_params is not None, \ "FLAGS.pruned_params is empty!!! Please set it by '--pruned_params' option." pruned_params = FLAGS.pruned_params.strip().split(",") logger.info("pruned params: {}".format(pruned_params)) pruned_ratios = [float(n) for n in FLAGS.pruned_ratios.strip().split(",")] logger.info("pruned ratios: {}".format(pruned_ratios)) assert len(pruned_params) == len(pruned_ratios), \ "The length of pruned params and pruned ratios should be equal." assert (pruned_ratios > [0] * len(pruned_ratios) and pruned_ratios < [1] * len(pruned_ratios) ), "The elements of pruned ratios should be in range (0, 1)." assert FLAGS.prune_criterion in ['l1_norm', 'geometry_median'], \ "unsupported prune criterion {}".format(FLAGS.prune_criterion) pruner = Pruner(criterion=FLAGS.prune_criterion) train_prog = pruner.prune( train_prog, fluid.global_scope(), params=pruned_params, ratios=pruned_ratios, place=place, only_graph=False)[0] compiled_train_prog = fluid.CompiledProgram(train_prog).with_data_parallel( loss_name=loss.name, build_strategy=build_strategy, exec_strategy=exec_strategy) if FLAGS.eval: base_flops = flops(eval_prog) eval_prog = pruner.prune( eval_prog, fluid.global_scope(), params=pruned_params, ratios=pruned_ratios, place=place, only_graph=True)[0] pruned_flops = flops(eval_prog) logger.info("FLOPs -{}; total FLOPs: {}; pruned FLOPs: {}".format( float(base_flops - pruned_flops) / base_flops, base_flops, pruned_flops)) compiled_eval_prog = fluid.compiler.CompiledProgram(eval_prog) if FLAGS.resume_checkpoint: checkpoint.load_checkpoint(exe, train_prog, FLAGS.resume_checkpoint) start_iter = checkpoint.global_step() train_reader = create_reader(cfg.TrainReader, (cfg.max_iters - start_iter) * devices_num, cfg) train_loader.set_sample_list_generator(train_reader, place) # whether output bbox is normalized in model output layer is_bbox_normalized = False if hasattr(model, 'is_bbox_normalized') and \ callable(model.is_bbox_normalized): is_bbox_normalized = model.is_bbox_normalized() # if map_type not set, use default 11point, only use in VOC eval map_type = cfg.map_type if 'map_type' in cfg else '11point' train_stats = TrainingStats(cfg.log_smooth_window, train_keys) train_loader.start() start_time = time.time() end_time = time.time() cfg_name = os.path.basename(FLAGS.config).split('.')[0] save_dir = os.path.join(cfg.save_dir, cfg_name) time_stat = deque(maxlen=cfg.log_smooth_window) best_box_ap_list = [0.0, 0] #[map, iter] # use tb-paddle to log data if FLAGS.use_tb: from tb_paddle import SummaryWriter tb_writer = SummaryWriter(FLAGS.tb_log_dir) tb_loss_step = 0 tb_mAP_step = 0 if FLAGS.eval: resolution = None if 'Mask' in cfg.architecture: resolution = model.mask_head.resolution # evaluation results = eval_run( exe, compiled_eval_prog, eval_loader, eval_keys, eval_values, eval_cls, cfg, resolution=resolution) dataset = cfg['EvalReader']['dataset'] box_ap_stats = eval_results( results, cfg.metric, cfg.num_classes, resolution, is_bbox_normalized, FLAGS.output_eval, map_type, dataset=dataset) for it in range(start_iter, cfg.max_iters): start_time = end_time end_time = time.time() time_stat.append(end_time - start_time) time_cost = np.mean(time_stat) eta_sec = (cfg.max_iters - it) * time_cost eta = str(datetime.timedelta(seconds=int(eta_sec))) outs = exe.run(compiled_train_prog, fetch_list=train_values) stats = {k: np.array(v).mean() for k, v in zip(train_keys, outs[:-1])} # use tb-paddle to log loss if FLAGS.use_tb: if it % cfg.log_iter == 0: for loss_name, loss_value in stats.items(): tb_writer.add_scalar(loss_name, loss_value, tb_loss_step) tb_loss_step += 1 train_stats.update(stats) logs = train_stats.log() if it % cfg.log_iter == 0 and (not FLAGS.dist or trainer_id == 0): strs = 'iter: {}, lr: {:.6f}, {}, time: {:.3f}, eta: {}'.format( it, np.mean(outs[-1]), logs, time_cost, eta) logger.info(strs) if (it > 0 and it % cfg.snapshot_iter == 0 or it == cfg.max_iters - 1) \ and (not FLAGS.dist or trainer_id == 0): save_name = str(it) if it != cfg.max_iters - 1 else "model_final" checkpoint.save(exe, train_prog, os.path.join(save_dir, save_name)) if FLAGS.eval: # evaluation resolution = None if 'Mask' in cfg.architecture: resolution = model.mask_head.resolution results = eval_run( exe, compiled_eval_prog, eval_loader, eval_keys, eval_values, eval_cls, cfg=cfg, resolution=resolution) box_ap_stats = eval_results( results, cfg.metric, cfg.num_classes, resolution, is_bbox_normalized, FLAGS.output_eval, map_type, dataset=dataset) # use tb_paddle to log mAP if FLAGS.use_tb: tb_writer.add_scalar("mAP", box_ap_stats[0], tb_mAP_step) tb_mAP_step += 1 if box_ap_stats[0] > best_box_ap_list[0]: best_box_ap_list[0] = box_ap_stats[0] best_box_ap_list[1] = it checkpoint.save(exe, train_prog, os.path.join(save_dir, "best_model")) logger.info("Best test box ap: {}, in iter: {}".format( best_box_ap_list[0], best_box_ap_list[1])) train_loader.reset() if __name__ == '__main__': parser = ArgsParser() parser.add_argument( "-r", "--resume_checkpoint", default=None, type=str, help="Checkpoint path for resuming training.") parser.add_argument( "--fp16", action='store_true', default=False, help="Enable mixed precision training.") parser.add_argument( "--loss_scale", default=8., type=float, help="Mixed precision training loss scale.") parser.add_argument( "--eval", action='store_true', default=False, help="Whether to perform evaluation in train") parser.add_argument( "--output_eval", default=None, type=str, help="Evaluation directory, default is current directory.") parser.add_argument( "--use_tb", type=bool, default=False, help="whether to record the data to Tensorboard.") parser.add_argument( '--tb_log_dir', type=str, default="tb_log_dir/scalar", help='Tensorboard logging directory for scalar.') parser.add_argument( "-p", "--pruned_params", default=None, type=str, help="The parameters to be pruned when calculating sensitivities.") parser.add_argument( "--pruned_ratios", default=None, type=str, help="The ratios pruned iteratively for each parameter when calculating sensitivities." ) parser.add_argument( "-P", "--print_params", default=False, action='store_true', help="Whether to only print the parameters' names and shapes.") parser.add_argument( "--prune_criterion", default='l1_norm', type=str, help="criterion function type for channels sorting in pruning, can be set " \ "as 'l1_norm' or 'geometry_median' currently, default 'l1_norm'") FLAGS = parser.parse_args() main()