# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import math import paddle import paddle.nn.functional as F import math import numpy as np def bbox2delta(src_boxes, tgt_boxes, weights): src_w = src_boxes[:, 2] - src_boxes[:, 0] src_h = src_boxes[:, 3] - src_boxes[:, 1] src_ctr_x = src_boxes[:, 0] + 0.5 * src_w src_ctr_y = src_boxes[:, 1] + 0.5 * src_h tgt_w = tgt_boxes[:, 2] - tgt_boxes[:, 0] tgt_h = tgt_boxes[:, 3] - tgt_boxes[:, 1] tgt_ctr_x = tgt_boxes[:, 0] + 0.5 * tgt_w tgt_ctr_y = tgt_boxes[:, 1] + 0.5 * tgt_h wx, wy, ww, wh = weights dx = wx * (tgt_ctr_x - src_ctr_x) / src_w dy = wy * (tgt_ctr_y - src_ctr_y) / src_h dw = ww * paddle.log(tgt_w / src_w) dh = wh * paddle.log(tgt_h / src_h) deltas = paddle.stack((dx, dy, dw, dh), axis=1) return deltas def delta2bbox(deltas, boxes, weights): clip_scale = math.log(1000.0 / 16) widths = boxes[:, 2] - boxes[:, 0] heights = boxes[:, 3] - boxes[:, 1] ctr_x = boxes[:, 0] + 0.5 * widths ctr_y = boxes[:, 1] + 0.5 * heights wx, wy, ww, wh = weights dx = deltas[:, 0::4] / wx dy = deltas[:, 1::4] / wy dw = deltas[:, 2::4] / ww dh = deltas[:, 3::4] / wh # Prevent sending too large values into paddle.exp() dw = paddle.clip(dw, max=clip_scale) dh = paddle.clip(dh, max=clip_scale) pred_ctr_x = dx * widths.unsqueeze(1) + ctr_x.unsqueeze(1) pred_ctr_y = dy * heights.unsqueeze(1) + ctr_y.unsqueeze(1) pred_w = paddle.exp(dw) * widths.unsqueeze(1) pred_h = paddle.exp(dh) * heights.unsqueeze(1) pred_boxes = [] pred_boxes.append(pred_ctr_x - 0.5 * pred_w) pred_boxes.append(pred_ctr_y - 0.5 * pred_h) pred_boxes.append(pred_ctr_x + 0.5 * pred_w) pred_boxes.append(pred_ctr_y + 0.5 * pred_h) pred_boxes = paddle.stack(pred_boxes, axis=-1) return pred_boxes def expand_bbox(bboxes, scale): w_half = (bboxes[:, 2] - bboxes[:, 0]) * .5 h_half = (bboxes[:, 3] - bboxes[:, 1]) * .5 x_c = (bboxes[:, 2] + bboxes[:, 0]) * .5 y_c = (bboxes[:, 3] + bboxes[:, 1]) * .5 w_half *= scale h_half *= scale bboxes_exp = np.zeros(bboxes.shape, dtype=np.float32) bboxes_exp[:, 0] = x_c - w_half bboxes_exp[:, 2] = x_c + w_half bboxes_exp[:, 1] = y_c - h_half bboxes_exp[:, 3] = y_c + h_half return bboxes_exp def clip_bbox(boxes, im_shape): h, w = im_shape[0], im_shape[1] x1 = boxes[:, 0].clip(0, w) y1 = boxes[:, 1].clip(0, h) x2 = boxes[:, 2].clip(0, w) y2 = boxes[:, 3].clip(0, h) return paddle.stack([x1, y1, x2, y2], axis=1) def nonempty_bbox(boxes, min_size=0, return_mask=False): w = boxes[:, 2] - boxes[:, 0] h = boxes[:, 3] - boxes[:, 1] mask = paddle.logical_and(w > min_size, w > min_size) if return_mask: return mask keep = paddle.nonzero(mask).flatten() return keep def bbox_area(boxes): return (boxes[:, 2] - boxes[:, 0]) * (boxes[:, 3] - boxes[:, 1]) def bbox_overlaps(boxes1, boxes2): """ Calculate overlaps between boxes1 and boxes2 Args: boxes1 (Tensor): boxes with shape [M, 4] boxes2 (Tensor): boxes with shape [N, 4] Return: overlaps (Tensor): overlaps between boxes1 and boxes2 with shape [M, N] """ M = boxes1.shape[0] N = boxes2.shape[0] if M * N == 0: return paddle.zeros([M, N], dtype='float32') area1 = bbox_area(boxes1) area2 = bbox_area(boxes2) xy_max = paddle.minimum( paddle.unsqueeze(boxes1, 1)[:, :, 2:], boxes2[:, 2:]) xy_min = paddle.maximum( paddle.unsqueeze(boxes1, 1)[:, :, :2], boxes2[:, :2]) width_height = xy_max - xy_min width_height = width_height.clip(min=0) inter = width_height.prod(axis=2) overlaps = paddle.where(inter > 0, inter / (paddle.unsqueeze(area1, 1) + area2 - inter), paddle.zeros_like(inter)) return overlaps def xywh2xyxy(box): x, y, w, h = box x1 = x - w * 0.5 y1 = y - h * 0.5 x2 = x + w * 0.5 y2 = y + h * 0.5 return [x1, y1, x2, y2] def make_grid(h, w, dtype): yv, xv = paddle.meshgrid([paddle.arange(h), paddle.arange(w)]) return paddle.stack((xv, yv), 2).cast(dtype=dtype) def decode_yolo(box, anchor, downsample_ratio): """decode yolo box Args: box (list): [x, y, w, h], all have the shape [b, na, h, w, 1] anchor (list): anchor with the shape [na, 2] downsample_ratio (int): downsample ratio, default 32 scale (float): scale, default 1. Return: box (list): decoded box, [x, y, w, h], all have the shape [b, na, h, w, 1] """ x, y, w, h = box na, grid_h, grid_w = x.shape[1:4] grid = make_grid(grid_h, grid_w, x.dtype).reshape((1, 1, grid_h, grid_w, 2)) x1 = (x + grid[:, :, :, :, 0:1]) / grid_w y1 = (y + grid[:, :, :, :, 1:2]) / grid_h anchor = paddle.to_tensor(anchor) anchor = paddle.cast(anchor, x.dtype) anchor = anchor.reshape((1, na, 1, 1, 2)) w1 = paddle.exp(w) * anchor[:, :, :, :, 0:1] / (downsample_ratio * grid_w) h1 = paddle.exp(h) * anchor[:, :, :, :, 1:2] / (downsample_ratio * grid_h) return [x1, y1, w1, h1] def iou_similarity(box1, box2, eps=1e-9): """Calculate iou of box1 and box2 Args: box1 (Tensor): box with the shape [N, M1, 4] box2 (Tensor): box with the shape [N, M2, 4] Return: iou (Tensor): iou between box1 and box2 with the shape [N, M1, M2] """ box1 = box1.unsqueeze(2) # [N, M1, 4] -> [N, M1, 1, 4] box2 = box2.unsqueeze(1) # [N, M2, 4] -> [N, 1, M2, 4] px1y1, px2y2 = box1[:, :, :, 0:2], box1[:, :, :, 2:4] gx1y1, gx2y2 = box2[:, :, :, 0:2], box2[:, :, :, 2:4] x1y1 = paddle.maximum(px1y1, gx1y1) x2y2 = paddle.minimum(px2y2, gx2y2) overlap = (x2y2 - x1y1).clip(0).prod(-1) area1 = (px2y2 - px1y1).clip(0).prod(-1) area2 = (gx2y2 - gx1y1).clip(0).prod(-1) union = area1 + area2 - overlap + eps return overlap / union def bbox_iou(box1, box2, giou=False, diou=False, ciou=False, eps=1e-9): """calculate the iou of box1 and box2 Args: box1 (list): [x, y, w, h], all have the shape [b, na, h, w, 1] box2 (list): [x, y, w, h], all have the shape [b, na, h, w, 1] giou (bool): whether use giou or not, default False diou (bool): whether use diou or not, default False ciou (bool): whether use ciou or not, default False eps (float): epsilon to avoid divide by zero Return: iou (Tensor): iou of box1 and box1, with the shape [b, na, h, w, 1] """ px1, py1, px2, py2 = box1 gx1, gy1, gx2, gy2 = box2 x1 = paddle.maximum(px1, gx1) y1 = paddle.maximum(py1, gy1) x2 = paddle.minimum(px2, gx2) y2 = paddle.minimum(py2, gy2) overlap = ((x2 - x1).clip(0)) * ((y2 - y1).clip(0)) area1 = (px2 - px1) * (py2 - py1) area1 = area1.clip(0) area2 = (gx2 - gx1) * (gy2 - gy1) area2 = area2.clip(0) union = area1 + area2 - overlap + eps iou = overlap / union if giou or ciou or diou: # convex w, h cw = paddle.maximum(px2, gx2) - paddle.minimum(px1, gx1) ch = paddle.maximum(py2, gy2) - paddle.minimum(py1, gy1) if giou: c_area = cw * ch + eps return iou - (c_area - union) / c_area else: # convex diagonal squared c2 = cw**2 + ch**2 + eps # center distance rho2 = ((px1 + px2 - gx1 - gx2)**2 + (py1 + py2 - gy1 - gy2)**2) / 4 if diou: return iou - rho2 / c2 else: w1, h1 = px2 - px1, py2 - py1 + eps w2, h2 = gx2 - gx1, gy2 - gy1 + eps delta = paddle.atan(w1 / h1) - paddle.atan(w2 / h2) v = (4 / math.pi**2) * paddle.pow(delta, 2) alpha = v / (1 + eps - iou + v) alpha.stop_gradient = True return iou - (rho2 / c2 + v * alpha) else: return iou def poly2rbox(polys): """ poly:[x0,y0,x1,y1,x2,y2,x3,y3] to rotated_boxes:[x_ctr,y_ctr,w,h,angle] """ rotated_boxes = [] for poly in polys: poly = np.array(poly[:8], dtype=np.float32) pt1 = (poly[0], poly[1]) pt2 = (poly[2], poly[3]) pt3 = (poly[4], poly[5]) pt4 = (poly[6], poly[7]) edge1 = np.sqrt((pt1[0] - pt2[0]) * (pt1[0] - pt2[0]) + (pt1[1] - pt2[ 1]) * (pt1[1] - pt2[1])) edge2 = np.sqrt((pt2[0] - pt3[0]) * (pt2[0] - pt3[0]) + (pt2[1] - pt3[ 1]) * (pt2[1] - pt3[1])) width = max(edge1, edge2) height = min(edge1, edge2) rbox_angle = 0 if edge1 > edge2: rbox_angle = np.arctan2( np.float(pt2[1] - pt1[1]), np.float(pt2[0] - pt1[0])) elif edge2 >= edge1: rbox_angle = np.arctan2( np.float(pt4[1] - pt1[1]), np.float(pt4[0] - pt1[0])) def norm_angle(angle, range=[-np.pi / 4, np.pi]): return (angle - range[0]) % range[1] + range[0] rbox_angle = norm_angle(rbox_angle) x_ctr = np.float(pt1[0] + pt3[0]) / 2 y_ctr = np.float(pt1[1] + pt3[1]) / 2 rotated_box = np.array([x_ctr, y_ctr, width, height, rbox_angle]) rotated_boxes.append(rotated_box) ret_rotated_boxes = np.array(rotated_boxes) assert ret_rotated_boxes.shape[1] == 5 return ret_rotated_boxes def cal_line_length(point1, point2): import math return math.sqrt( math.pow(point1[0] - point2[0], 2) + math.pow(point1[1] - point2[1], 2)) def get_best_begin_point_single(coordinate): x1, y1, x2, y2, x3, y3, x4, y4 = coordinate xmin = min(x1, x2, x3, x4) ymin = min(y1, y2, y3, y4) xmax = max(x1, x2, x3, x4) ymax = max(y1, y2, y3, y4) combinate = [[[x1, y1], [x2, y2], [x3, y3], [x4, y4]], [[x4, y4], [x1, y1], [x2, y2], [x3, y3]], [[x3, y3], [x4, y4], [x1, y1], [x2, y2]], [[x2, y2], [x3, y3], [x4, y4], [x1, y1]]] dst_coordinate = [[xmin, ymin], [xmax, ymin], [xmax, ymax], [xmin, ymax]] force = 100000000.0 force_flag = 0 for i in range(4): temp_force = cal_line_length(combinate[i][0], dst_coordinate[0]) \ + cal_line_length(combinate[i][1], dst_coordinate[1]) \ + cal_line_length(combinate[i][2], dst_coordinate[2]) \ + cal_line_length(combinate[i][3], dst_coordinate[3]) if temp_force < force: force = temp_force force_flag = i if force_flag != 0: pass return np.array(combinate[force_flag]).reshape(8) def rbox2poly_np(rrects): """ rrect:[x_ctr,y_ctr,w,h,angle] to poly:[x0,y0,x1,y1,x2,y2,x3,y3] """ polys = [] for i in range(rrects.shape[0]): rrect = rrects[i] # x_ctr, y_ctr, width, height, angle = rrect[:5] x_ctr = rrect[0] y_ctr = rrect[1] width = rrect[2] height = rrect[3] angle = rrect[4] tl_x, tl_y, br_x, br_y = -width / 2, -height / 2, width / 2, height / 2 rect = np.array([[tl_x, br_x, br_x, tl_x], [tl_y, tl_y, br_y, br_y]]) R = np.array([[np.cos(angle), -np.sin(angle)], [np.sin(angle), np.cos(angle)]]) poly = R.dot(rect) x0, x1, x2, x3 = poly[0, :4] + x_ctr y0, y1, y2, y3 = poly[1, :4] + y_ctr poly = np.array([x0, y0, x1, y1, x2, y2, x3, y3], dtype=np.float32) poly = get_best_begin_point_single(poly) polys.append(poly) polys = np.array(polys) return polys def rbox2poly(rrects): """ rrect:[x_ctr,y_ctr,w,h,angle] to poly:[x0,y0,x1,y1,x2,y2,x3,y3] """ N = paddle.shape(rrects)[0] x_ctr = rrects[:, 0] y_ctr = rrects[:, 1] width = rrects[:, 2] height = rrects[:, 3] angle = rrects[:, 4] tl_x, tl_y, br_x, br_y = -width * 0.5, -height * 0.5, width * 0.5, height * 0.5 normal_rects = paddle.stack( [tl_x, br_x, br_x, tl_x, tl_y, tl_y, br_y, br_y], axis=0) normal_rects = paddle.reshape(normal_rects, [2, 4, N]) normal_rects = paddle.transpose(normal_rects, [2, 0, 1]) sin, cos = paddle.sin(angle), paddle.cos(angle) # M.shape=[N,2,2] M = paddle.stack([cos, -sin, sin, cos], axis=0) M = paddle.reshape(M, [2, 2, N]) M = paddle.transpose(M, [2, 0, 1]) # polys:[N,8] polys = paddle.matmul(M, normal_rects) polys = paddle.transpose(polys, [2, 1, 0]) polys = paddle.reshape(polys, [-1, N]) polys = paddle.transpose(polys, [1, 0]) tmp = paddle.stack( [x_ctr, y_ctr, x_ctr, y_ctr, x_ctr, y_ctr, x_ctr, y_ctr], axis=1) polys = polys + tmp return polys def bbox_iou_np_expand(box1, box2, x1y1x2y2=True, eps=1e-16): """ Calculate the iou of box1 and box2 with numpy. Args: box1 (ndarray): [N, 4] box2 (ndarray): [M, 4], usually N != M x1y1x2y2 (bool): whether in x1y1x2y2 stype, default True eps (float): epsilon to avoid divide by zero Return: iou (ndarray): iou of box1 and box2, [N, M] """ N, M = len(box1), len(box2) # usually N != M if x1y1x2y2: b1_x1, b1_y1 = box1[:, 0], box1[:, 1] b1_x2, b1_y2 = box1[:, 2], box1[:, 3] b2_x1, b2_y1 = box2[:, 0], box2[:, 1] b2_x2, b2_y2 = box2[:, 2], box2[:, 3] else: # cxcywh style # Transform from center and width to exact coordinates b1_x1, b1_x2 = box1[:, 0] - box1[:, 2] / 2, box1[:, 0] + box1[:, 2] / 2 b1_y1, b1_y2 = box1[:, 1] - box1[:, 3] / 2, box1[:, 1] + box1[:, 3] / 2 b2_x1, b2_x2 = box2[:, 0] - box2[:, 2] / 2, box2[:, 0] + box2[:, 2] / 2 b2_y1, b2_y2 = box2[:, 1] - box2[:, 3] / 2, box2[:, 1] + box2[:, 3] / 2 # get the coordinates of the intersection rectangle inter_rect_x1 = np.zeros((N, M), dtype=np.float32) inter_rect_y1 = np.zeros((N, M), dtype=np.float32) inter_rect_x2 = np.zeros((N, M), dtype=np.float32) inter_rect_y2 = np.zeros((N, M), dtype=np.float32) for i in range(len(box2)): inter_rect_x1[:, i] = np.maximum(b1_x1, b2_x1[i]) inter_rect_y1[:, i] = np.maximum(b1_y1, b2_y1[i]) inter_rect_x2[:, i] = np.minimum(b1_x2, b2_x2[i]) inter_rect_y2[:, i] = np.minimum(b1_y2, b2_y2[i]) # Intersection area inter_area = np.maximum(inter_rect_x2 - inter_rect_x1, 0) * np.maximum( inter_rect_y2 - inter_rect_y1, 0) # Union Area b1_area = np.repeat( ((b1_x2 - b1_x1) * (b1_y2 - b1_y1)).reshape(-1, 1), M, axis=-1) b2_area = np.repeat( ((b2_x2 - b2_x1) * (b2_y2 - b2_y1)).reshape(1, -1), N, axis=0) ious = inter_area / (b1_area + b2_area - inter_area + eps) return ious