/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #include "paddle/fluid/framework/parallel_executor.h" #include #include #include #include "paddle/fluid/framework/ir/graph_helper.h" #include "paddle/fluid/framework/ir/graph.h" #if defined(PADDLE_WITH_CUDA) && !defined(_WIN32) #include "paddle/fluid/platform/nccl_helper.h" #endif #include "paddle/fluid/framework/details/fast_threaded_ssa_graph_executor.h" #include "paddle/fluid/framework/details/multi_devices_helper.h" #include "paddle/fluid/framework/details/parallel_ssa_graph_executor.h" #include "paddle/fluid/framework/details/reference_count_pass_helper.h" #include "paddle/fluid/framework/details/scope_buffered_ssa_graph_executor.h" #include "paddle/fluid/framework/details/threaded_ssa_graph_executor.h" #include "paddle/fluid/platform/profiler.h" #ifdef WITH_GPERFTOOLS #include "gperftools/profiler.h" #endif DEFINE_string(pe_profile_fname, "", "Profiler filename for PE, which generated by gperftools." "Only valid when compiled `WITH_PRIFILER=ON`. Empty if disable."); namespace paddle { namespace framework { static std::once_flag gProfileOnce; #ifdef WITH_GPERFTOOLS static bool gProfileStarted = false; #endif class ParallelExecutorPrivate { public: explicit ParallelExecutorPrivate(const std::vector &places) : places_(places) { if (!FLAGS_pe_profile_fname.empty()) { std::call_once(gProfileOnce, [] { #ifdef WITH_GPERFTOOLS ProfilerStart(FLAGS_pe_profile_fname.c_str()); gProfileStarted = true; #else LOG(WARNING) << "Paddle is not compiled with gperftools. " "FLAGS_pe_profile_fname will be ignored"; #endif }); } } ~ParallelExecutorPrivate() { if (own_local_scope_) { for (size_t i = 1; i < local_scopes_.size(); ++i) { // Skip the first scope, since it is the global scope. Scope *local_scope = local_scopes_[i]; if (global_scope_->HasKid(local_scope)) { global_scope_->DeleteScope(local_scope); } } } } std::unique_ptr PrepareGCAndRefCnts( std::unique_ptr graph, size_t max_memory_size); inline bool HasGarbageCollectors() const { return !gcs_.empty(); } void ResetRuntimeReferenceCount(const std::vector &fetch_tensors, const std::string &fetched_var_name) { for (size_t i = 0; i < runtime_ref_cnts_.size(); ++i) { for (auto &pair : global_ref_cnts_[i]) { runtime_ref_cnts_[i][pair.first] = pair.second; } for (auto &fetch_name : fetch_tensors) { runtime_ref_cnts_[i].erase(fetch_name); } runtime_ref_cnts_[i].erase(fetched_var_name); } } std::vector places_; std::vector local_scopes_; Scope *global_scope_; // not owned std::unique_ptr executor_; #if defined(PADDLE_WITH_CUDA) && !defined(_WIN32) std::unique_ptr nccl_ctxs_; #endif bool own_local_scope_; bool use_cuda_; bool use_all_reduce_; // global_ref_cnts_ is only initialized when ParallelExecutor constructs, and // then keeps unchanged // Before each iteration, runtime_ref_cnts_ is reset to global_ref_cnts_ std::vector global_ref_cnts_; std::vector runtime_ref_cnts_; details::GarbageCollectorMap gcs_; }; std::unique_ptr ParallelExecutorPrivate::PrepareGCAndRefCnts( std::unique_ptr graph, size_t max_memory_size) { for (size_t i = 0; i < places_.size(); ++i) { auto &place = places_[i]; if (gcs_.count(place) > 0) { continue; } std::unique_ptr gc; #ifdef PADDLE_WITH_CUDA if (platform::is_gpu_place(place)) { if (IsFastEagerDeletionModeEnabled()) { gc.reset(new UnsafeFastGPUGarbageCollector( boost::get(place), max_memory_size)); } else { gc.reset(new StreamGarbageCollector( boost::get(place), max_memory_size)); } VLOG(10) << "Created " << i << "-th GarbageCollector at " << place; } else { #endif if (platform::is_cpu_place(place)) { gc.reset(new CPUGarbageCollector(boost::get(place), max_memory_size)); VLOG(10) << "Created GarbageCollector at " << place; } else { PADDLE_THROW("Unsupported place for garbage collection"); } #ifdef PADDLE_WITH_CUDA } #endif gcs_.emplace(place, std::move(gc)); } if (!gcs_.empty()) { std::vector last_live_ops_of_vars; auto ref_cnt_pass = ir::PassRegistry::Instance().Get("reference_count_pass"); ref_cnt_pass->SetNotOwned(details::kGlobalReferenceCount, &global_ref_cnts_); ref_cnt_pass->SetNotOwned(details::kLastLiveOpsOfVars, &last_live_ops_of_vars); graph = ref_cnt_pass->Apply(std::move(graph)); VLOG(10) << "ReferenceCountPass Applied"; auto eager_deletion_pass = ir::PassRegistry::Instance().Get("eager_deletion_pass"); eager_deletion_pass->SetNotOwned(details::kRuntimeReferenceCount, &runtime_ref_cnts_); eager_deletion_pass->SetNotOwned(details::kGarbageCollector, &gcs_); eager_deletion_pass->SetNotOwned(details::kLastLiveOpsOfVars, &last_live_ops_of_vars); eager_deletion_pass->SetNotOwned(details::kAllPlaces, &places_); graph = eager_deletion_pass->Apply(std::move(graph)); VLOG(10) << "EagerDeletionPass Applied"; } return graph; } std::vector &ParallelExecutor::GetLocalScopes() { return member_->local_scopes_; } ParallelExecutor::ParallelExecutor( const std::vector &places, const std::unordered_set ¶ms, const std::unordered_set &bcast_vars, const ProgramDesc &main_program, const std::string &loss_var_name, Scope *scope, const std::vector &local_scopes, const ExecutionStrategy &exec_strategy, const BuildStrategy &build_strategy, size_t num_trainers, size_t trainer_id) : member_(new ParallelExecutorPrivate(places)) { member_->global_scope_ = scope; member_->use_cuda_ = exec_strategy.use_cuda_; member_->use_all_reduce_ = build_strategy.reduce_ == BuildStrategy::ReduceStrategy::kAllReduce; if (!member_->use_all_reduce_) { PADDLE_ENFORCE(places.size() > 1, "If you set build_strategy.reduce with 'Reduce'," "the number of places must be greater than 1."); } if (exec_strategy.type_ == ExecutionStrategy::kParallelGraph) { PADDLE_ENFORCE( member_->use_all_reduce_, "build_strategy.reduce should be `AllReduce` if you want to use" "ParallelGraph executor."); PADDLE_ENFORCE( member_->use_cuda_, "execution_strategy.use_cuda should be True if you want to use" "ParallelGraph executor."); } // Step 1. Bcast the params to devs. // Create local scopes if (local_scopes.empty()) { member_->own_local_scope_ = true; member_->local_scopes_.emplace_back(member_->global_scope_); for (size_t i = 1; i < member_->places_.size(); ++i) { member_->local_scopes_.emplace_back(&scope->NewScope()); } } else { member_->own_local_scope_ = false; PADDLE_ENFORCE_EQ(member_->places_.size(), local_scopes.size()); for (size_t i = 0; i < member_->places_.size(); ++i) { member_->local_scopes_.emplace_back(&local_scopes[i]->NewScope()); } } if (member_->use_cuda_) { // Bcast Parameters to all GPUs #if defined(PADDLE_WITH_CUDA) && !defined(_WIN32) auto *nccl_id_var = scope->FindVar(NCCL_ID_VARNAME); ncclUniqueId *nccl_id = nullptr; bool need_group_call = true; if (exec_strategy.type_ == ExecutionStrategy::kParallelGraph) { // parallel graph mode should initialize nccl by ncclCommInitRank since // it call nccl operator per device per thread. if (nccl_id_var == nullptr) { nccl_id = new ncclUniqueId(); PADDLE_ENFORCE(platform::dynload::ncclGetUniqueId(nccl_id)); *member_->global_scope_->Var(NCCL_ID_VARNAME) ->GetMutable() = *nccl_id; } else { nccl_id = nccl_id_var->GetMutable(); } need_group_call = false; } else if (nccl_id_var != nullptr) { // the other executor type. // the distributed training with nccl mode would initialize the nccl id in // startup_program. nccl_id = nccl_id_var->GetMutable(); } else { // initlize NCCL by ncclCommInitAll, do not need nccl_id. } member_->nccl_ctxs_.reset(new platform::NCCLContextMap( member_->places_, nccl_id, num_trainers, trainer_id, need_group_call)); #else PADDLE_THROW("Not compiled with CUDA"); #endif } if (member_->local_scopes_.size() != 1 && local_scopes.empty()) { BCastParamsToDevices(bcast_vars); } // Startup Program has been run. All local scopes has correct parameters. // Step 2. Convert main_program to SSA form and dependency graph. Also, insert // ncclOp std::vector> graphs; #if defined(PADDLE_WITH_CUDA) && !defined(_WIN32) if (exec_strategy.type_ == ExecutionStrategy::kParallelGraph) { for (size_t i = 0; i < member_->places_.size(); ++i) { std::unique_ptr graph = build_strategy.Apply( main_program, {member_->places_[i]}, loss_var_name, params, {member_->local_scopes_[i]}, member_->use_cuda_, member_->nccl_ctxs_.get()); graphs.push_back(std::move(graph)); } } else { std::unique_ptr graph = build_strategy.Apply( main_program, member_->places_, loss_var_name, params, member_->local_scopes_, member_->use_cuda_, member_->nccl_ctxs_.get()); graphs.push_back(std::move(graph)); } #else std::unique_ptr graph = build_strategy.Apply(main_program, member_->places_, loss_var_name, params, member_->local_scopes_, member_->use_cuda_); graphs.push_back(std::move(graph)); #endif // Step 3. Create vars in each scope. Passes may also create new vars. // skip control vars and empty vars std::vector var_infos; for (auto &graph : graphs) { for (auto &node : graph->Nodes()) { if (node->IsVar() && !node->IsCtrlVar() && node->Var()) { var_infos.emplace_back(); var_infos.back().name_ = node->Var()->Name(); var_infos.back().type_ = node->Var()->GetType(); var_infos.back().persistable_ = node->Var()->Persistable(); } } } // If the loss_var_name is given, the number of graph should be only one. if (loss_var_name.size()) { size_t graph_num = ir::GraphNum(*graphs[0]); if (graph_num > 1) { LOG(WARNING) << "The number of graph should be only one, " "but the current graph has " << ir::GraphNum(*graphs[0]) << " sub_graphs. If you want to see the nodes of the " "sub_graphs, you should use 'FLAGS_print_sub_graph_dir' " "to specify the output dir. NOTES: if you not do training, " "please don't pass loss_var_name."; } } if (exec_strategy.type_ == ExecutionStrategy::kDefault) { member_->executor_.reset(new details::ThreadedSSAGraphExecutor( exec_strategy, member_->local_scopes_, member_->places_, std::move(graphs[0]))); } else if (exec_strategy.type_ == ExecutionStrategy::kParallelGraph) { member_->executor_.reset(new details::ParallelSSAGraphExecutor( exec_strategy, member_->local_scopes_, member_->places_, std::move(graphs))); } else { member_->executor_.reset(new details::FastThreadedSSAGraphExecutor( exec_strategy, member_->local_scopes_, member_->places_, std::move(graphs[0]))); } member_->executor_.reset(new details::ScopeBufferedSSAGraphExecutor( exec_strategy, member_->local_scopes_, std::move(var_infos), member_->places_, std::move(member_->executor_))); } void ParallelExecutor::BCastParamsToDevices( const std::unordered_set &vars) const { // the initializing bcast, all vars would be bcast from device(0). for (auto &var : vars) { framework::Variable *main_var = member_->local_scopes_[0]->FindVar(var); if (main_var == nullptr || !main_var->IsType()) { continue; } auto &main_tensor = main_var->Get(); if (!main_tensor.IsInitialized()) { VLOG(3) << "one in var not inited, return!"; continue; } auto &dims = main_tensor.dims(); if (paddle::platform::is_gpu_place(main_tensor.place())) { #if defined(PADDLE_WITH_CUDA) && !defined(_WIN32) std::vector buffers; size_t numel = main_tensor.numel(); ncclDataType_t data_type = platform::ToNCCLDataType(main_tensor.type()); for (size_t i = 0; i < member_->places_.size(); ++i) { auto place = member_->places_[i]; void *buffer; if (i == 0) { buffer = const_cast(main_tensor.data()); } else { auto local_scope = member_->local_scopes_[i]; auto *t = local_scope->Var(var)->GetMutable(); t->Resize(dims); buffer = t->mutable_data(place, main_tensor.type()); } buffers.push_back(buffer); } PADDLE_ENFORCE_EQ(member_->places_.size(), buffers.size(), "variables' buffer size to bcast NOT equal to places"); { platform::NCCLGroupGuard guard; for (size_t i = 0; i < member_->places_.size(); ++i) { auto &nccl_ctx = member_->nccl_ctxs_->at(member_->places_[i]); platform::dynload::ncclBcast(buffers[i], numel, data_type, 0, nccl_ctx.comm_, nccl_ctx.stream()); } member_->nccl_ctxs_->WaitAll(); } #else PADDLE_THROW("Not compiled with CUDA"); #endif } else { platform::CPUPlace cpu; for (size_t i = 0; i < member_->places_.size(); ++i) { if (i == 0) continue; auto local_scope = member_->local_scopes_[i]; auto *t = local_scope->Var(var)->GetMutable(); // FIXME(zcd): LR_DECAY_COUNTER should not be shared. This is a hot fix. if (member_->use_all_reduce_ || member_->use_cuda_ || var == "@LR_DECAY_COUNTER@") { t->Resize(dims); t->mutable_data(cpu, main_tensor.type()); paddle::framework::TensorCopy(main_tensor, cpu, t); } else { t->ShareDataWith(main_tensor); } } } } } void ParallelExecutor::Run(const std::vector &fetch_tensors, const std::string &fetched_var_name) { #ifdef WITH_GPERFTOOLS if (gProfileStarted) { ProfilerFlush(); } #endif platform::RecordBlock b(0); if (member_->HasGarbageCollectors()) { member_->ResetRuntimeReferenceCount(fetch_tensors, fetched_var_name); } auto fetch_data = member_->executor_->Run(fetch_tensors); *member_->global_scope_->Var(fetched_var_name)->GetMutable() = fetch_data; } void ParallelExecutor::FeedTensorsIntoLocalScopes( const std::vector> &tensors) { PADDLE_ENFORCE_EQ(member_->local_scopes_.size(), tensors.size()); for (size_t i = 0; i < tensors.size(); ++i) { auto &map = tensors[i]; auto *scope = member_->local_scopes_[i]; for (auto &pair : map) { auto *trg = scope->Var(pair.first)->GetMutable(); trg->ShareDataWith(pair.second); trg->set_lod(pair.second.lod()); } } } void ParallelExecutor::FeedAndSplitTensorIntoLocalScopes( const std::unordered_map &tensors) { for (auto pair : tensors) { auto lod_tensors = pair.second.SplitLoDTensor(member_->places_); PADDLE_ENFORCE_EQ( member_->places_.size(), lod_tensors.size(), "The number of samples of current batch is less than the count of " "devices, currently, it is not allowed. (%d vs %d)", member_->places_.size(), lod_tensors.size()); for (size_t j = 0; j < member_->places_.size(); ++j) { // TODO(panxy0718): Do I need to delete this var? auto t = member_->local_scopes_[j]->Var(pair.first)->GetMutable(); t->ShareDataWith(lod_tensors[j]); t->set_lod(lod_tensors[j].lod()); } } } ParallelExecutor::~ParallelExecutor() { for (auto &p : member_->places_) { platform::DeviceContextPool::Instance().Get(p)->Wait(); } delete member_; } } // namespace framework } // namespace paddle USE_PASS(reference_count_pass); USE_PASS(eager_deletion_pass);