from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np import paddle import paddle.nn as nn from ppdet.core.workspace import register __all__ = ['BaseArch'] @register class BaseArch(nn.Layer): def __init__(self, data_format='NCHW'): super(BaseArch, self).__init__() self.data_format = data_format def forward(self, inputs): if self.data_format == 'NHWC': image = inputs['image'] inputs['image'] = paddle.transpose(image, [0, 2, 3, 1]) self.inputs = inputs self.model_arch() if self.training: out = self.get_loss() else: out = self.get_pred() return out def build_inputs(self, data, input_def): inputs = {} for i, k in enumerate(input_def): inputs[k] = data[i] return inputs def model_arch(self, ): pass def get_loss(self, ): raise NotImplementedError("Should implement get_loss method!") def get_pred(self, ): raise NotImplementedError("Should implement get_pred method!")