# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import os.path as osp import glob import pkg_resources try: from collections.abc import Sequence except: from collections import Sequence from ppdet.core.workspace import load_config, create from ppdet.utils.checkpoint import load_weight from ppdet.utils.download import get_config_path from ppdet.utils.logger import setup_logger logger = setup_logger(__name__) __all__ = [ 'list_model', 'get_config_file', 'get_weights_url', 'get_model', 'MODEL_ZOO_FILENAME' ] MODEL_ZOO_FILENAME = 'MODEL_ZOO' def list_model(filters=[]): model_zoo_file = pkg_resources.resource_filename('ppdet.model_zoo', MODEL_ZOO_FILENAME) with open(model_zoo_file) as f: model_names = f.read().splitlines() # filter model_name def filt(name): for f in filters: if name.find(f) < 0: return False return True if isinstance(filters, str) or not isinstance(filters, Sequence): filters = [filters] model_names = [name for name in model_names if filt(name)] if len(model_names) == 0 and len(filters) > 0: raise ValueError("no model found, please check filters seeting, " "filters can be set as following kinds:\n" "\tDataset: coco, voc ...\n" "\tArchitecture: yolo, rcnn, ssd ...\n" "\tBackbone: resnet, vgg, darknet ...\n") model_str = "Available Models:\n" for model_name in model_names: model_str += "\t{}\n".format(model_name) logger.info(model_str) # models and configs save on bcebos under dygraph directory def get_config_file(model_name): return get_config_path("ppdet://dygraph/configs/{}.yml".format(model_name)) def get_weights_url(model_name): return "ppdet://dygraph/{}.pdparams".format(model_name) def get_model(model_name, pretrained=True): cfg_file = get_config_file(model_name) cfg = load_config(cfg_file) model = create(cfg.architecture) if pretrained: load_weight(model, get_weights_url(model_name)) return model