architecture: FCOS pretrain_weights: https://paddledet.bj.bcebos.com/models/pretrained/ResNet50_cos_pretrained.pdparams FCOS: backbone: ResNet neck: FPN fcos_head: FCOSHead fcos_post_process: FCOSPostProcess ResNet: # index 0 stands for res2 depth: 50 norm_type: bn freeze_at: 0 return_idx: [1,2,3] num_stages: 4 FPN: out_channel: 256 spatial_scales: [0.125, 0.0625, 0.03125] extra_stage: 2 has_extra_convs: true use_c5: false FCOSHead: fcos_feat: name: FCOSFeat feat_in: 256 feat_out: 256 num_convs: 4 norm_type: "gn" use_dcn: false num_classes: 80 fpn_stride: [8, 16, 32, 64, 128] prior_prob: 0.01 fcos_loss: FCOSLoss norm_reg_targets: true centerness_on_reg: true FCOSLoss: loss_alpha: 0.25 loss_gamma: 2.0 iou_loss_type: "giou" reg_weights: 1.0 FCOSPostProcess: decode: name: FCOSBox num_classes: 80 batch_size: 1 nms: name: MultiClassNMS nms_top_k: 1000 keep_top_k: 100 score_threshold: 0.025 nms_threshold: 0.6