# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals import numpy as np from PIL import Image, ImageDraw import cv2 from .colormap import colormap __all__ = ['visualize_results'] def visualize_results(image, bbox_res, mask_res, segm_res, im_id, catid2name, threshold=0.5): """ Visualize bbox and mask results """ if bbox_res is not None: image = draw_bbox(image, im_id, catid2name, bbox_res, threshold) if mask_res is not None: image = draw_mask(image, im_id, mask_res, threshold) if segm_res is not None: image = draw_segm(image, im_id, catid2name, segm_res, threshold) return image def draw_mask(image, im_id, segms, threshold, alpha=0.7): """ Draw mask on image """ mask_color_id = 0 w_ratio = .4 color_list = colormap(rgb=True) img_array = np.array(image).astype('float32') for dt in np.array(segms): if im_id != dt['image_id']: continue segm, score = dt['segmentation'], dt['score'] if score < threshold: continue import pycocotools.mask as mask_util mask = mask_util.decode(segm) * 255 color_mask = color_list[mask_color_id % len(color_list), 0:3] mask_color_id += 1 for c in range(3): color_mask[c] = color_mask[c] * (1 - w_ratio) + w_ratio * 255 idx = np.nonzero(mask) img_array[idx[0], idx[1], :] *= 1.0 - alpha img_array[idx[0], idx[1], :] += alpha * color_mask return Image.fromarray(img_array.astype('uint8')) def draw_bbox(image, im_id, catid2name, bboxes, threshold): """ Draw bbox on image """ draw = ImageDraw.Draw(image) catid2color = {} color_list = colormap(rgb=True)[:40] for dt in np.array(bboxes): if im_id != dt['image_id']: continue catid, bbox, score = dt['category_id'], dt['bbox'], dt['score'] if score < threshold: continue xmin, ymin, w, h = bbox xmax = xmin + w ymax = ymin + h if catid not in catid2color: idx = np.random.randint(len(color_list)) catid2color[catid] = color_list[idx] color = tuple(catid2color[catid]) # draw bbox draw.line( [(xmin, ymin), (xmin, ymax), (xmax, ymax), (xmax, ymin), (xmin, ymin)], width=2, fill=color) # draw label text = "{} {:.2f}".format(catid2name[catid], score) tw, th = draw.textsize(text) draw.rectangle( [(xmin + 1, ymin - th), (xmin + tw + 1, ymin)], fill=color) draw.text((xmin + 1, ymin - th), text, fill=(255, 255, 255)) return image def draw_segm(image, im_id, catid2name, segms, threshold, alpha=0.7, draw_box=True): """ Draw segmentation on image """ mask_color_id = 0 w_ratio = .4 color_list = colormap(rgb=True) img_array = np.array(image).astype('float32') for dt in np.array(segms): if im_id != dt['image_id']: continue segm, score, catid = dt['segmentation'], dt['score'], dt['category_id'] if score < threshold: continue import pycocotools.mask as mask_util mask = mask_util.decode(segm) * 255 color_mask = color_list[mask_color_id % len(color_list), 0:3] mask_color_id += 1 for c in range(3): color_mask[c] = color_mask[c] * (1 - w_ratio) + w_ratio * 255 idx = np.nonzero(mask) img_array[idx[0], idx[1], :] *= 1.0 - alpha img_array[idx[0], idx[1], :] += alpha * color_mask if not draw_box: center_y, center_x = ndimage.measurements.center_of_mass(mask) label_text = "{}".format(catid2name[catid]) vis_pos = (max(int(center_x) - 10, 0), int(center_y)) cv2.putText(img_array, label_text, vis_pos, cv2.FONT_HERSHEY_COMPLEX, 0.3, (255, 255, 255)) else: mask = mask_util.decode(segm) * 255 sum_x = np.sum(mask, axis=0) x = np.where(sum_x > 0.5)[0] sum_y = np.sum(mask, axis=1) y = np.where(sum_y > 0.5)[0] x0, x1, y0, y1 = x[0], x[-1], y[0], y[-1] cv2.rectangle(img_array, (x0, y0), (x1, y1), tuple(color_mask.astype('int32').tolist()), 1) bbox_text = '%s %.2f' % (catid2name[catid], score) t_size = cv2.getTextSize(bbox_text, 0, 0.3, thickness=1)[0] cv2.rectangle(img_array, (x0, y0), (x0 + t_size[0], y0 - t_size[1] - 3), tuple(color_mask.astype('int32').tolist()), -1) cv2.putText( img_array, bbox_text, (x0, y0 - 2), cv2.FONT_HERSHEY_SIMPLEX, 0.3, (0, 0, 0), 1, lineType=cv2.LINE_AA) return Image.fromarray(img_array.astype('uint8'))