# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import contextlib import sys import numpy as np import collections from paddle.fluid import core from paddle.fluid import framework from paddle.fluid.imperative import base __all__ = ['Layer', 'PyLayer'] class Layer(core.Layer): """Layers composed of operators.""" def __init__(self, dtype=core.VarDesc.VarType.FP32, name=None): self._built = False self._dtype = dtype def parameters(self): params = [] for key in self.__dict__.keys(): value = self.__dict__[key] if isinstance(value, framework.Parameter): params.append(value) elif isinstance(value, core.Layer): params.extend(value.parameters()) elif isinstance(value, collections.Container): if len(value) == 0: continue if isinstance(value[0], framework.Parameter): params.extend(value) elif isinstance(value[0], core.Layer): for v in value: params.extend(v.parameters()) return params def clear_gradients(self): for p in self.parameters(): p._clear_gradient() def _build_once(self, inputs): pass def __call__(self, *inputs): if not self._built: self._build_once(*inputs) outputs = self.forward(*inputs) self._built = True return outputs def forward(self, *inputs): raise NotImplementedError def backward(self, *inputs): raise ValueError("Layer shouldn't implement backward") class PyLayer(core.PyLayer): """Layers composed of user-defined python codes.""" def __init__(self): super(PyLayer, self).__init__() @classmethod def _do_forward(cls, inputs): return cls._to_tuple(cls.forward(inputs)) @classmethod def _do_backward(cls, inputs): return cls._to_tuple(cls.backward(inputs)) @staticmethod def _to_tuple(inputs): if not isinstance(inputs, list) and not isinstance(inputs, tuple): inputs = [inputs] ret = [] for inp in inputs: tensor = core.LoDTensor() tensor.set(inp, core.CPUPlace()) ret.append(tensor) return tuple(ret) @staticmethod def forward(*inputs): raise NotImplementedError @staticmethod def backward(*douts): raise NotImplementedError @classmethod def __call__(cls, *inputs): tracer = framework._imperative_tracer() block = framework.default_main_program().current_block() ivar_inputs = [x._ivar for x in inputs] if not hasattr(cls, 'forward_id'): cls.forward_id = core.PyLayer.num_funcs() + 1 PyLayer.register_func(cls.forward_id, cls._do_forward) cls.backward_id = core.PyLayer.num_funcs() + 1 PyLayer.register_func(cls.backward_id, cls._do_backward) iop = core.OpBase() iop.forward_id = cls.forward_id iop.backward_id = cls.backward_id block.ops.append(iop) ivars = tracer.py_trace(iop, ivar_inputs, False) ret = [] for ivar in ivars: tensor = ivar.value().get_tensor() py_var = framework.Variable( block, type=core.VarDesc.VarType.LOD_TENSOR, name=None, shape=tensor.shape(), dtype=tensor._dtype(), ivar=ivar) ret.append(py_var) return ret