# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import cv2 import time import numpy as np import collections __all__ = [ 'MOTTimer', 'Detection', 'write_mot_results', 'load_det_results', 'preprocess_reid', 'get_crops', 'clip_box', 'scale_coords', 'flow_statistic', 'plot_tracking' ] class MOTTimer(object): """ This class used to compute and print the current FPS while evaling. """ def __init__(self, window_size=20): self.start_time = 0. self.diff = 0. self.duration = 0. self.deque = collections.deque(maxlen=window_size) def tic(self): # using time.time instead of time.clock because time time.clock # does not normalize for multithreading self.start_time = time.time() def toc(self, average=True): self.diff = time.time() - self.start_time self.deque.append(self.diff) if average: self.duration = np.mean(self.deque) else: self.duration = np.sum(self.deque) return self.duration def clear(self): self.start_time = 0. self.diff = 0. self.duration = 0. class Detection(object): """ This class represents a bounding box detection in a single image. Args: tlwh (Tensor): Bounding box in format `(top left x, top left y, width, height)`. score (Tensor): Bounding box confidence score. feature (Tensor): A feature vector that describes the object contained in this image. cls_id (Tensor): Bounding box category id. """ def __init__(self, tlwh, score, feature, cls_id): self.tlwh = np.asarray(tlwh, dtype=np.float32) self.score = float(score) self.feature = np.asarray(feature, dtype=np.float32) self.cls_id = int(cls_id) def to_tlbr(self): """ Convert bounding box to format `(min x, min y, max x, max y)`, i.e., `(top left, bottom right)`. """ ret = self.tlwh.copy() ret[2:] += ret[:2] return ret def to_xyah(self): """ Convert bounding box to format `(center x, center y, aspect ratio, height)`, where the aspect ratio is `width / height`. """ ret = self.tlwh.copy() ret[:2] += ret[2:] / 2 ret[2] /= ret[3] return ret def write_mot_results(filename, results, data_type='mot', num_classes=1): # support single and multi classes if data_type in ['mot', 'mcmot']: save_format = '{frame},{id},{x1},{y1},{w},{h},{score},{cls_id},-1,-1\n' elif data_type == 'kitti': save_format = '{frame} {id} car 0 0 -10 {x1} {y1} {x2} {y2} -10 -10 -10 -1000 -1000 -1000 -10\n' else: raise ValueError(data_type) f = open(filename, 'w') for cls_id in range(num_classes): for frame_id, tlwhs, tscores, track_ids in results[cls_id]: if data_type == 'kitti': frame_id -= 1 for tlwh, score, track_id in zip(tlwhs, tscores, track_ids): if track_id < 0: continue if data_type == 'mot': cls_id = -1 x1, y1, w, h = tlwh x2, y2 = x1 + w, y1 + h line = save_format.format( frame=frame_id, id=track_id, x1=x1, y1=y1, x2=x2, y2=y2, w=w, h=h, score=score, cls_id=cls_id) f.write(line) print('MOT results save in {}'.format(filename)) def load_det_results(det_file, num_frames): assert os.path.exists(det_file) and os.path.isfile(det_file), \ '{} is not exist or not a file.'.format(det_file) labels = np.loadtxt(det_file, dtype='float32', delimiter=',') assert labels.shape[1] == 7, \ "Each line of {} should have 7 items: '[frame_id],[x0],[y0],[w],[h],[score],[class_id]'.".format(det_file) results_list = [] for frame_i in range(num_frames): results = {'bbox': [], 'score': [], 'cls_id': []} lables_with_frame = labels[labels[:, 0] == frame_i + 1] # each line of lables_with_frame: # [frame_id],[x0],[y0],[w],[h],[score],[class_id] for l in lables_with_frame: results['bbox'].append(l[1:5]) results['score'].append(l[5:6]) results['cls_id'].append(l[6:7]) results_list.append(results) return results_list def scale_coords(coords, input_shape, im_shape, scale_factor): # Note: ratio has only one value, scale_factor[0] == scale_factor[1] # # This function only used for JDE YOLOv3 or other detectors with # LetterBoxResize and JDEBBoxPostProcess, coords output from detector had # not scaled back to the origin image. ratio = scale_factor[0] pad_w = (input_shape[1] - int(im_shape[1])) / 2 pad_h = (input_shape[0] - int(im_shape[0])) / 2 coords[:, 0::2] -= pad_w coords[:, 1::2] -= pad_h coords[:, 0:4] /= ratio coords[:, :4] = np.clip(coords[:, :4], a_min=0, a_max=coords[:, :4].max()) return coords.round() def clip_box(xyxy, ori_image_shape): H, W = ori_image_shape xyxy[:, 0::2] = np.clip(xyxy[:, 0::2], a_min=0, a_max=W) xyxy[:, 1::2] = np.clip(xyxy[:, 1::2], a_min=0, a_max=H) w = xyxy[:, 2:3] - xyxy[:, 0:1] h = xyxy[:, 3:4] - xyxy[:, 1:2] mask = np.logical_and(h > 0, w > 0) keep_idx = np.nonzero(mask) return xyxy[keep_idx[0]], keep_idx def get_crops(xyxy, ori_img, w, h): crops = [] xyxy = xyxy.astype(np.int64) ori_img = ori_img.transpose(1, 0, 2) # [h,w,3]->[w,h,3] for i, bbox in enumerate(xyxy): crop = ori_img[bbox[0]:bbox[2], bbox[1]:bbox[3], :] crops.append(crop) crops = preprocess_reid(crops, w, h) return crops def preprocess_reid(imgs, w=64, h=192, mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]): im_batch = [] for img in imgs: try: img = cv2.resize(img, (w, h)) except: embed() img = img[:, :, ::-1].astype('float32').transpose((2, 0, 1)) / 255 img_mean = np.array(mean).reshape((3, 1, 1)) img_std = np.array(std).reshape((3, 1, 1)) img -= img_mean img /= img_std img = np.expand_dims(img, axis=0) im_batch.append(img) im_batch = np.concatenate(im_batch, 0) return im_batch def flow_statistic(result, secs_interval, do_entrance_counting, video_fps, entrance, id_set, interval_id_set, in_id_list, out_id_list, prev_center, records, data_type='mot', num_classes=1): # Count in and out number: # Use horizontal center line as the entrance just for simplification. # If a person located in the above the horizontal center line # at the previous frame and is in the below the line at the current frame, # the in number is increased by one. # If a person was in the below the horizontal center line # at the previous frame and locates in the below the line at the current frame, # the out number is increased by one. # TODO: if the entrance is not the horizontal center line, # the counting method should be optimized. if do_entrance_counting: entrance_y = entrance[1] # xmin, ymin, xmax, ymax frame_id, tlwhs, tscores, track_ids = result for tlwh, score, track_id in zip(tlwhs, tscores, track_ids): if track_id < 0: continue if data_type == 'kitti': frame_id -= 1 x1, y1, w, h = tlwh center_x = x1 + w / 2. center_y = y1 + h / 2. if track_id in prev_center: if prev_center[track_id][1] <= entrance_y and \ center_y > entrance_y: in_id_list.append(track_id) if prev_center[track_id][1] >= entrance_y and \ center_y < entrance_y: out_id_list.append(track_id) prev_center[track_id][0] = center_x prev_center[track_id][1] = center_y else: prev_center[track_id] = [center_x, center_y] # Count totol number, number at a manual-setting interval frame_id, tlwhs, tscores, track_ids = result for tlwh, score, track_id in zip(tlwhs, tscores, track_ids): if track_id < 0: continue id_set.add(track_id) interval_id_set.add(track_id) # Reset counting at the interval beginning if frame_id % video_fps == 0 and frame_id / video_fps % secs_interval == 0: curr_interval_count = len(interval_id_set) interval_id_set.clear() info = "Frame id: {}, Total count: {}".format(frame_id, len(id_set)) if do_entrance_counting: info += ", In count: {}, Out count: {}".format( len(in_id_list), len(out_id_list)) if frame_id % video_fps == 0 and frame_id / video_fps % secs_interval == 0: info += ", Count during {} secs: {}".format(secs_interval, curr_interval_count) interval_id_set.clear() print(info) info += "\n" records.append(info) return { "id_set": id_set, "interval_id_set": interval_id_set, "in_id_list": in_id_list, "out_id_list": out_id_list, "prev_center": prev_center, "records": records } def get_color(idx): idx = idx * 3 color = ((37 * idx) % 255, (17 * idx) % 255, (29 * idx) % 255) return color def plot_tracking(image, tlwhs, obj_ids, scores=None, frame_id=0, fps=0., ids2names=[], do_entrance_counting=False, entrance=None): im = np.ascontiguousarray(np.copy(image)) im_h, im_w = im.shape[:2] text_scale = max(1, image.shape[1] / 1600.) text_thickness = 2 line_thickness = max(1, int(image.shape[1] / 500.)) if fps > 0: _line = 'frame: %d fps: %.2f num: %d' % (frame_id, fps, len(tlwhs)) else: _line = 'frame: %d num: %d' % (frame_id, len(tlwhs)) cv2.putText( im, _line, (0, int(15 * text_scale)), cv2.FONT_HERSHEY_PLAIN, text_scale, (0, 0, 255), thickness=2) for i, tlwh in enumerate(tlwhs): x1, y1, w, h = tlwh intbox = tuple(map(int, (x1, y1, x1 + w, y1 + h))) obj_id = int(obj_ids[i]) id_text = '{}'.format(int(obj_id)) if ids2names != []: assert len( ids2names) == 1, "plot_tracking only supports single classes." id_text = '{}_'.format(ids2names[0]) + id_text _line_thickness = 1 if obj_id <= 0 else line_thickness color = get_color(abs(obj_id)) cv2.rectangle( im, intbox[0:2], intbox[2:4], color=color, thickness=line_thickness) cv2.putText( im, id_text, (intbox[0], intbox[1] - 10), cv2.FONT_HERSHEY_PLAIN, text_scale, (0, 0, 255), thickness=text_thickness) if scores is not None: text = '{:.2f}'.format(float(scores[i])) cv2.putText( im, text, (intbox[0], intbox[1] + 10), cv2.FONT_HERSHEY_PLAIN, text_scale, (0, 255, 255), thickness=text_thickness) if do_entrance_counting: entrance_line = tuple(map(int, entrance)) cv2.rectangle( im, entrance_line[0:2], entrance_line[2:4], color=(0, 255, 255), thickness=line_thickness) return im