// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include #include #include #include #include #include #include #include #include #ifdef _WIN32 #include #include #elif LINUX #include #endif #include #include "include/keypoint_detector.h" #include "include/object_detector.h" #include "include/preprocess_op.h" DEFINE_string(model_dir, "", "Path of object detector inference model"); DEFINE_string(model_dir_keypoint, "", "Path of keypoint detector inference model"); DEFINE_string(image_file, "", "Path of input image"); DEFINE_string(image_dir, "", "Dir of input image, `image_file` has a higher priority."); DEFINE_int32(batch_size, 1, "batch_size of object detector"); DEFINE_int32(batch_size_keypoint, 8, "batch_size of keypoint detector"); DEFINE_string( video_file, "", "Path of input video, `video_file` or `camera_id` has a highest priority."); DEFINE_int32(camera_id, -1, "Device id of camera to predict"); DEFINE_bool( use_gpu, false, "Deprecated, please use `--device` to set the device you want to run."); DEFINE_string(device, "CPU", "Choose the device you want to run, it can be: CPU/GPU/XPU, " "default is CPU."); DEFINE_double(threshold, 0.5, "Threshold of score."); DEFINE_double(threshold_keypoint, 0.5, "Threshold of score."); DEFINE_string(output_dir, "output", "Directory of output visualization files."); DEFINE_string(run_mode, "paddle", "Mode of running(paddle/trt_fp32/trt_fp16/trt_int8)"); DEFINE_int32(gpu_id, 0, "Device id of GPU to execute"); DEFINE_bool(run_benchmark, false, "Whether to predict a image_file repeatedly for benchmark"); DEFINE_bool(use_mkldnn, false, "Whether use mkldnn with CPU"); DEFINE_int32(cpu_threads, 1, "Num of threads with CPU"); DEFINE_int32(trt_min_shape, 1, "Min shape of TRT DynamicShapeI"); DEFINE_int32(trt_max_shape, 1280, "Max shape of TRT DynamicShapeI"); DEFINE_int32(trt_opt_shape, 640, "Opt shape of TRT DynamicShapeI"); DEFINE_bool(trt_calib_mode, false, "If the model is produced by TRT offline quantitative calibration, " "trt_calib_mode need to set True"); DEFINE_bool(use_dark, true, "Whether use dark decode in keypoint postprocess"); void PrintBenchmarkLog(std::vector det_time, int img_num) { LOG(INFO) << "----------------------- Config info -----------------------"; LOG(INFO) << "runtime_device: " << FLAGS_device; LOG(INFO) << "ir_optim: " << "True"; LOG(INFO) << "enable_memory_optim: " << "True"; int has_trt = FLAGS_run_mode.find("trt"); if (has_trt >= 0) { LOG(INFO) << "enable_tensorrt: " << "True"; std::string precision = FLAGS_run_mode.substr(4, 8); LOG(INFO) << "precision: " << precision; } else { LOG(INFO) << "enable_tensorrt: " << "False"; LOG(INFO) << "precision: " << "fp32"; } LOG(INFO) << "enable_mkldnn: " << (FLAGS_use_mkldnn ? "True" : "False"); LOG(INFO) << "cpu_math_library_num_threads: " << FLAGS_cpu_threads; LOG(INFO) << "----------------------- Data info -----------------------"; LOG(INFO) << "batch_size: " << FLAGS_batch_size; LOG(INFO) << "input_shape: " << "dynamic shape"; LOG(INFO) << "----------------------- Model info -----------------------"; FLAGS_model_dir.erase(FLAGS_model_dir.find_last_not_of("/") + 1); LOG(INFO) << "model_name: " << FLAGS_model_dir; LOG(INFO) << "----------------------- Perf info ------------------------"; LOG(INFO) << "Total number of predicted data: " << img_num << " and total time spent(ms): " << std::accumulate(det_time.begin(), det_time.end(), 0.); img_num = std::max(1, img_num); LOG(INFO) << "preproce_time(ms): " << det_time[0] / img_num << ", inference_time(ms): " << det_time[1] / img_num << ", postprocess_time(ms): " << det_time[2] / img_num; } void PrintKptsBenchmarkLog(std::vector det_time, int img_num) { LOG(INFO) << "----------------------- Data info -----------------------"; LOG(INFO) << "batch_size_keypoint: " << FLAGS_batch_size_keypoint; LOG(INFO) << "----------------------- Model info -----------------------"; FLAGS_model_dir_keypoint.erase( FLAGS_model_dir_keypoint.find_last_not_of("/") + 1); LOG(INFO) << "keypoint_model_name: " << FLAGS_model_dir_keypoint; LOG(INFO) << "----------------------- Perf info ------------------------"; LOG(INFO) << "Total number of predicted data: " << img_num << " and total time spent(ms): " << std::accumulate(det_time.begin(), det_time.end(), 0.); img_num = std::max(1, img_num); LOG(INFO) << "Average time cost per person:"; LOG(INFO) << "preproce_time(ms): " << det_time[0] / img_num << ", inference_time(ms): " << det_time[1] / img_num << ", postprocess_time(ms): " << det_time[2] / img_num; } static std::string DirName(const std::string& filepath) { auto pos = filepath.rfind(OS_PATH_SEP); if (pos == std::string::npos) { return ""; } return filepath.substr(0, pos); } static bool PathExists(const std::string& path) { #ifdef _WIN32 struct _stat buffer; return (_stat(path.c_str(), &buffer) == 0); #else struct stat buffer; return (stat(path.c_str(), &buffer) == 0); #endif // !_WIN32 } static void MkDir(const std::string& path) { if (PathExists(path)) return; int ret = 0; #ifdef _WIN32 ret = _mkdir(path.c_str()); #else ret = mkdir(path.c_str(), 0755); #endif // !_WIN32 if (ret != 0) { std::string path_error(path); path_error += " mkdir failed!"; throw std::runtime_error(path_error); } } static void MkDirs(const std::string& path) { if (path.empty()) return; if (PathExists(path)) return; MkDirs(DirName(path)); MkDir(path); } void PredictVideo(const std::string& video_path, PaddleDetection::ObjectDetector* det, PaddleDetection::KeyPointDetector* keypoint, const std::string& output_dir = "output") { // Open video cv::VideoCapture capture; std::string video_out_name = "output.mp4"; if (FLAGS_camera_id != -1) { capture.open(FLAGS_camera_id); } else { capture.open(video_path.c_str()); video_out_name = video_path.substr(video_path.find_last_of(OS_PATH_SEP) + 1); } if (!capture.isOpened()) { printf("can not open video : %s\n", video_path.c_str()); return; } // Get Video info : resolution, fps, frame count int video_width = static_cast(capture.get(CV_CAP_PROP_FRAME_WIDTH)); int video_height = static_cast(capture.get(CV_CAP_PROP_FRAME_HEIGHT)); int video_fps = static_cast(capture.get(CV_CAP_PROP_FPS)); int video_frame_count = static_cast(capture.get(CV_CAP_PROP_FRAME_COUNT)); printf("fps: %d, frame_count: %d\n", video_fps, video_frame_count); // Create VideoWriter for output cv::VideoWriter video_out; std::string video_out_path(output_dir); if (output_dir.rfind(OS_PATH_SEP) != output_dir.size() - 1) { video_out_path += OS_PATH_SEP; } video_out_path += video_out_name; video_out.open(video_out_path.c_str(), 0x00000021, video_fps, cv::Size(video_width, video_height), true); if (!video_out.isOpened()) { printf("create video writer failed!\n"); return; } PaddleDetection::PoseSmooth smoother = PaddleDetection::PoseSmooth(video_width, video_height); std::vector result; std::vector bbox_num; std::vector det_times; auto labels = det->GetLabelList(); auto colormap = PaddleDetection::GenerateColorMap(labels.size()); // Store keypoint results std::vector result_kpts; std::vector imgs_kpts; std::vector> center_bs; std::vector> scale_bs; std::vector colormap_kpts = PaddleDetection::GenerateColorMap(20); // Capture all frames and do inference cv::Mat frame; int frame_id = 1; bool is_rbox = false; while (capture.read(frame)) { if (frame.empty()) { break; } std::vector imgs; imgs.push_back(frame); printf("detect frame: %d\n", frame_id); det->Predict(imgs, FLAGS_threshold, 0, 1, &result, &bbox_num, &det_times); std::vector out_result; for (const auto& item : result) { if (item.confidence < FLAGS_threshold || item.class_id == -1) { continue; } out_result.push_back(item); if (item.rect.size() > 6) { is_rbox = true; printf("class=%d confidence=%.4f rect=[%d %d %d %d %d %d %d %d]\n", item.class_id, item.confidence, item.rect[0], item.rect[1], item.rect[2], item.rect[3], item.rect[4], item.rect[5], item.rect[6], item.rect[7]); } else { printf("class=%d confidence=%.4f rect=[%d %d %d %d]\n", item.class_id, item.confidence, item.rect[0], item.rect[1], item.rect[2], item.rect[3]); } } if (keypoint) { result_kpts.clear(); int imsize = out_result.size(); for (int i = 0; i < imsize; i++) { auto item = out_result[i]; cv::Mat crop_img; std::vector keypoint_times; std::vector rect = { item.rect[0], item.rect[1], item.rect[2], item.rect[3]}; std::vector center; std::vector scale; if (item.class_id == 0) { PaddleDetection::CropImg(frame, crop_img, rect, center, scale); center_bs.emplace_back(center); scale_bs.emplace_back(scale); imgs_kpts.emplace_back(crop_img); } if (imgs_kpts.size() == FLAGS_batch_size_keypoint || ((i == imsize - 1) && !imgs_kpts.empty())) { keypoint->Predict(imgs_kpts, center_bs, scale_bs, FLAGS_threshold, 0, 1, &result_kpts, &keypoint_times); imgs_kpts.clear(); center_bs.clear(); scale_bs.clear(); } } if (result_kpts.size() == 1) { for (int i = 0; i < result_kpts.size(); i++) { result_kpts[i] = smoother.smooth_process(&(result_kpts[i])); } } cv::Mat out_im = VisualizeKptsResult(frame, result_kpts, colormap_kpts); video_out.write(out_im); } else { // Visualization result cv::Mat out_im = PaddleDetection::VisualizeResult( frame, out_result, labels, colormap, is_rbox); video_out.write(out_im); } frame_id += 1; } capture.release(); video_out.release(); } void PredictImage(const std::vector all_img_paths, const int batch_size, const double threshold, const bool run_benchmark, PaddleDetection::ObjectDetector* det, PaddleDetection::KeyPointDetector* keypoint, const std::string& output_dir = "output") { std::vector det_t = {0, 0, 0}; int steps = ceil(static_cast(all_img_paths.size()) / batch_size); int kpts_imgs = 0; std::vector keypoint_t = {0, 0, 0}; printf("total images = %d, batch_size = %d, total steps = %d\n", all_img_paths.size(), batch_size, steps); for (int idx = 0; idx < steps; idx++) { std::vector batch_imgs; int left_image_cnt = all_img_paths.size() - idx * batch_size; if (left_image_cnt > batch_size) { left_image_cnt = batch_size; } for (int bs = 0; bs < left_image_cnt; bs++) { std::string image_file_path = all_img_paths.at(idx * batch_size + bs); cv::Mat im = cv::imread(image_file_path, 1); batch_imgs.insert(batch_imgs.end(), im); } // Store all detected result std::vector result; std::vector bbox_num; std::vector det_times; // Store keypoint results std::vector result_kpts; std::vector imgs_kpts; std::vector> center_bs; std::vector> scale_bs; std::vector colormap_kpts = PaddleDetection::GenerateColorMap(20); bool is_rbox = false; if (run_benchmark) { det->Predict( batch_imgs, threshold, 10, 10, &result, &bbox_num, &det_times); } else { det->Predict(batch_imgs, threshold, 0, 1, &result, &bbox_num, &det_times); } // get labels and colormap auto labels = det->GetLabelList(); auto colormap = PaddleDetection::GenerateColorMap(labels.size()); int item_start_idx = 0; for (int i = 0; i < left_image_cnt; i++) { cv::Mat im = batch_imgs[i]; std::vector im_result; int detect_num = 0; for (int j = 0; j < bbox_num[i]; j++) { PaddleDetection::ObjectResult item = result[item_start_idx + j]; if (item.confidence < threshold || item.class_id == -1) { continue; } detect_num += 1; im_result.push_back(item); if (item.rect.size() > 6) { is_rbox = true; printf("class=%d confidence=%.4f rect=[%d %d %d %d %d %d %d %d]\n", item.class_id, item.confidence, item.rect[0], item.rect[1], item.rect[2], item.rect[3], item.rect[4], item.rect[5], item.rect[6], item.rect[7]); } else { printf("class=%d confidence=%.4f rect=[%d %d %d %d]\n", item.class_id, item.confidence, item.rect[0], item.rect[1], item.rect[2], item.rect[3]); } } std::cout << all_img_paths.at(idx * batch_size + i) << " The number of detected box: " << detect_num << std::endl; item_start_idx = item_start_idx + bbox_num[i]; std::vector compression_params; compression_params.push_back(CV_IMWRITE_JPEG_QUALITY); compression_params.push_back(95); std::string output_path(output_dir); if (output_dir.rfind(OS_PATH_SEP) != output_dir.size() - 1) { output_path += OS_PATH_SEP; } std::string image_file_path = all_img_paths.at(idx * batch_size + i); if (keypoint) { int imsize = im_result.size(); for (int i = 0; i < imsize; i++) { auto item = im_result[i]; cv::Mat crop_img; std::vector keypoint_times; std::vector rect = { item.rect[0], item.rect[1], item.rect[2], item.rect[3]}; std::vector center; std::vector scale; if (item.class_id == 0) { PaddleDetection::CropImg(im, crop_img, rect, center, scale); center_bs.emplace_back(center); scale_bs.emplace_back(scale); imgs_kpts.emplace_back(crop_img); kpts_imgs += 1; } if (imgs_kpts.size() == FLAGS_batch_size_keypoint || ((i == imsize - 1) && !imgs_kpts.empty())) { if (run_benchmark) { keypoint->Predict(imgs_kpts, center_bs, scale_bs, 0.5, 10, 10, &result_kpts, &keypoint_times); } else { keypoint->Predict(imgs_kpts, center_bs, scale_bs, 0.5, 0, 1, &result_kpts, &keypoint_times); } imgs_kpts.clear(); center_bs.clear(); scale_bs.clear(); keypoint_t[0] += keypoint_times[0]; keypoint_t[1] += keypoint_times[1]; keypoint_t[2] += keypoint_times[2]; } } std::string kpts_savepath = output_path + "keypoint_" + image_file_path.substr(image_file_path.find_last_of('/') + 1); cv::Mat kpts_vis_img = VisualizeKptsResult(im, result_kpts, colormap_kpts); cv::imwrite(kpts_savepath, kpts_vis_img, compression_params); printf("Visualized output saved as %s\n", kpts_savepath.c_str()); } else { // Visualization result cv::Mat vis_img = PaddleDetection::VisualizeResult( im, im_result, labels, colormap, is_rbox); std::string det_savepath = output_path + image_file_path.substr(image_file_path.find_last_of('/') + 1); cv::imwrite(det_savepath, vis_img, compression_params); printf("Visualized output saved as %s\n", det_savepath.c_str()); } } det_t[0] += det_times[0]; det_t[1] += det_times[1]; det_t[2] += det_times[2]; } PrintBenchmarkLog(det_t, all_img_paths.size()); if (keypoint) { PrintKptsBenchmarkLog(keypoint_t, kpts_imgs); } } int main(int argc, char** argv) { // Parsing command-line google::ParseCommandLineFlags(&argc, &argv, true); if (FLAGS_model_dir.empty() || (FLAGS_image_file.empty() && FLAGS_image_dir.empty() && FLAGS_video_file.empty())) { std::cout << "Usage: ./main --model_dir=/PATH/TO/INFERENCE_MODEL/ " "(--model_dir_keypoint=/PATH/TO/INFERENCE_MODEL/)" << "--image_file=/PATH/TO/INPUT/IMAGE/" << std::endl; return -1; } if (!(FLAGS_run_mode == "paddle" || FLAGS_run_mode == "trt_fp32" || FLAGS_run_mode == "trt_fp16" || FLAGS_run_mode == "trt_int8")) { std::cout << "run_mode should be 'paddle', 'trt_fp32', 'trt_fp16' or 'trt_int8'."; return -1; } transform(FLAGS_device.begin(), FLAGS_device.end(), FLAGS_device.begin(), ::toupper); if (!(FLAGS_device == "CPU" || FLAGS_device == "GPU" || FLAGS_device == "XPU")) { std::cout << "device should be 'CPU', 'GPU' or 'XPU'."; return -1; } if (FLAGS_use_gpu) { std::cout << "Deprecated, please use `--device` to set the device you want " "to run."; return -1; } // Load model and create a object detector PaddleDetection::ObjectDetector det(FLAGS_model_dir, FLAGS_device, FLAGS_use_mkldnn, FLAGS_cpu_threads, FLAGS_run_mode, FLAGS_batch_size, FLAGS_gpu_id, FLAGS_trt_min_shape, FLAGS_trt_max_shape, FLAGS_trt_opt_shape, FLAGS_trt_calib_mode); PaddleDetection::KeyPointDetector* keypoint = nullptr; if (!FLAGS_model_dir_keypoint.empty()) { keypoint = new PaddleDetection::KeyPointDetector(FLAGS_model_dir_keypoint, FLAGS_device, FLAGS_use_mkldnn, FLAGS_cpu_threads, FLAGS_run_mode, FLAGS_batch_size_keypoint, FLAGS_gpu_id, FLAGS_trt_min_shape, FLAGS_trt_max_shape, FLAGS_trt_opt_shape, FLAGS_trt_calib_mode, FLAGS_use_dark); } // Do inference on input video or image if (!PathExists(FLAGS_output_dir)) { MkDirs(FLAGS_output_dir); } if (!FLAGS_video_file.empty() || FLAGS_camera_id != -1) { PredictVideo(FLAGS_video_file, &det, keypoint, FLAGS_output_dir); } else if (!FLAGS_image_file.empty() || !FLAGS_image_dir.empty()) { std::vector all_img_paths; std::vector cv_all_img_paths; if (!FLAGS_image_file.empty()) { all_img_paths.push_back(FLAGS_image_file); if (FLAGS_batch_size > 1) { std::cout << "batch_size should be 1, when set `image_file`." << std::endl; return -1; } } else { cv::glob(FLAGS_image_dir, cv_all_img_paths); for (const auto& img_path : cv_all_img_paths) { all_img_paths.push_back(img_path); } } PredictImage(all_img_paths, FLAGS_batch_size, FLAGS_threshold, FLAGS_run_benchmark, &det, keypoint, FLAGS_output_dir); } delete keypoint; keypoint = nullptr; return 0; }