// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include #include #include #include "preprocessor_detection.h" #include "utils/utils.h" namespace PaddleSolution { bool DetectionPreProcessor::single_process(const std::string& fname, std::vector &vec_data, int* ori_w, int* ori_h, int* resize_w, int* resize_h, float* scale_ratio) { cv::Mat im1 = cv::imread(fname, -1); cv::Mat im; if (_config->_feeds_size == 3) { // faster rcnn im1.convertTo(im, CV_32FC3, 1/255.0); } else if (_config->_feeds_size == 2) { // yolo v3 im = im1; } if (im.data == nullptr || im.empty()) { #ifdef _WIN32 std::cerr << "Failed to open image: " << fname << std::endl; #else LOG(ERROR) << "Failed to open image: " << fname; #endif return false; } int channels = im.channels(); if (channels == 1) { cv::cvtColor(im, im, cv::COLOR_GRAY2BGR); } channels = im.channels(); if (channels != 3 && channels != 4) { #ifdef _WIN32 std::cerr << "Only support rgb(gray) and rgba image." << std::endl; #else LOG(ERROR) << "Only support rgb(gray) and rgba image."; #endif return false; } *ori_w = im.cols; *ori_h = im.rows; cv::cvtColor(im, im, cv::COLOR_BGR2RGB); // channels = im.channels(); // resize int rw = im.cols; int rh = im.rows; float im_scale_ratio; utils::scaling(_config->_resize_type, rw, rh, _config->_resize[0], _config->_resize[1], _config->_target_short_size, _config->_resize_max_size, im_scale_ratio); cv::Size resize_size(rw, rh); *resize_w = rw; *resize_h = rh; *scale_ratio = im_scale_ratio; if (*ori_h != rh || *ori_w != rw) { cv::Mat im_temp; if (_config->_resize_type == utils::SCALE_TYPE::UNPADDING) { cv::resize(im, im_temp, resize_size, 0, 0, cv::INTER_LINEAR); } else if (_config->_resize_type == utils::SCALE_TYPE::RANGE_SCALING) { cv::resize(im, im_temp, cv::Size(), im_scale_ratio, im_scale_ratio, cv::INTER_LINEAR); } im = im_temp; } vec_data.resize(channels * rw * rh); float *data = vec_data.data(); float* pmean = _config->_mean.data(); float* pscale = _config->_std.data(); for (int h = 0; h < rh; ++h) { const uchar* uptr = im.ptr(h); const float* fptr = im.ptr(h); int im_index = 0; for (int w = 0; w < rw; ++w) { for (int c = 0; c < channels; ++c) { int top_index = (c * rh + h) * rw + w; float pixel; if (_config->_feeds_size == 2) { // yolo v3 pixel = static_cast(uptr[im_index++]) / 255.0; } else if (_config->_feeds_size == 3) { pixel = fptr[im_index++]; } pixel = (pixel - pmean[c]) / pscale[c]; data[top_index] = pixel; } } } return true; } bool DetectionPreProcessor::batch_process(const std::vector& imgs, std::vector> &data, int* ori_w, int* ori_h, int* resize_w, int* resize_h, float* scale_ratio) { auto ic = _config->_channels; auto iw = _config->_resize[0]; auto ih = _config->_resize[1]; std::vector threads; for (int i = 0; i < imgs.size(); ++i) { std::string path = imgs[i]; int* width = &ori_w[i]; int* height = &ori_h[i]; int* resize_width = &resize_w[i]; int* resize_height = &resize_h[i]; float* sr = &scale_ratio[i]; threads.emplace_back([this, &data, i, path, width, height, resize_width, resize_height, sr] { std::vector buffer; single_process(path, buffer, width, height, resize_width, resize_height, sr); data[i] = buffer; }); } for (auto& t : threads) { if (t.joinable()) { t.join(); } } return true; } bool DetectionPreProcessor::init(std::shared_ptr config) { _config = config; return true; } } // namespace PaddleSolution