# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ All layers just related to the detection neural network. """ from __future__ import print_function from .layer_function_generator import generate_layer_fn from .layer_function_generator import autodoc, templatedoc from ..layer_helper import LayerHelper from ..framework import Variable from . import tensor from . import nn from . import ops from ... import compat as cpt import math import six import numpy from functools import reduce __all__ = [ 'prior_box', 'density_prior_box', 'multi_box_head', 'bipartite_match', 'target_assign', 'detection_output', 'ssd_loss', 'detection_map', 'rpn_target_assign', 'anchor_generator', 'roi_perspective_transform', 'generate_proposal_labels', 'generate_proposals', 'generate_mask_labels', 'iou_similarity', 'box_coder', 'polygon_box_transform', 'yolov3_loss', 'multiclass_nms', ] def rpn_target_assign(bbox_pred, cls_logits, anchor_box, anchor_var, gt_boxes, is_crowd, im_info, rpn_batch_size_per_im=256, rpn_straddle_thresh=0.0, rpn_fg_fraction=0.5, rpn_positive_overlap=0.7, rpn_negative_overlap=0.3, use_random=True): """ **Target Assign Layer for region proposal network (RPN) in Faster-RCNN detection.** This layer can be, for given the Intersection-over-Union (IoU) overlap between anchors and ground truth boxes, to assign classification and regression targets to each each anchor, these target labels are used for train RPN. The classification targets is a binary class label (of being an object or not). Following the paper of Faster-RCNN, the positive labels are two kinds of anchors: (i) the anchor/anchors with the highest IoU overlap with a ground-truth box, or (ii) an anchor that has an IoU overlap higher than rpn_positive_overlap(0.7) with any ground-truth box. Note that a single ground-truth box may assign positive labels to multiple anchors. A non-positive anchor is when its IoU ratio is lower than rpn_negative_overlap (0.3) for all ground-truth boxes. Anchors that are neither positive nor negative do not contribute to the training objective. The regression targets are the encoded ground-truth boxes associated with the positive anchors. Args: bbox_pred(Variable): A 3-D Tensor with shape [N, M, 4] represents the predicted locations of M bounding bboxes. N is the batch size, and each bounding box has four coordinate values and the layout is [xmin, ymin, xmax, ymax]. cls_logits(Variable): A 3-D Tensor with shape [N, M, 1] represents the predicted confidence predictions. N is the batch size, 1 is the frontground and background sigmoid, M is number of bounding boxes. anchor_box(Variable): A 2-D Tensor with shape [M, 4] holds M boxes, each box is represented as [xmin, ymin, xmax, ymax], [xmin, ymin] is the left top coordinate of the anchor box, if the input is image feature map, they are close to the origin of the coordinate system. [xmax, ymax] is the right bottom coordinate of the anchor box. anchor_var(Variable): A 2-D Tensor with shape [M,4] holds expanded variances of anchors. gt_boxes (Variable): The ground-truth boudding boxes (bboxes) are a 2D LoDTensor with shape [Ng, 4], Ng is the total number of ground-truth bboxes of mini-batch input. is_crowd (Variable): A 1-D LoDTensor which indicates groud-truth is crowd. im_info (Variable): A 2-D LoDTensor with shape [N, 3]. N is the batch size, 3 is the height, width and scale. rpn_batch_size_per_im(int): Total number of RPN examples per image. rpn_straddle_thresh(float): Remove RPN anchors that go outside the image by straddle_thresh pixels. rpn_fg_fraction(float): Target fraction of RoI minibatch that is labeled foreground (i.e. class > 0), 0-th class is background. rpn_positive_overlap(float): Minimum overlap required between an anchor and ground-truth box for the (anchor, gt box) pair to be a positive example. rpn_negative_overlap(float): Maximum overlap allowed between an anchor and ground-truth box for the (anchor, gt box) pair to be a negative examples. Returns: tuple: A tuple(predicted_scores, predicted_location, target_label, target_bbox, bbox_inside_weight) is returned. The predicted_scores and predicted_location is the predicted result of the RPN. The target_label and target_bbox is the ground truth, respectively. The predicted_location is a 2D Tensor with shape [F, 4], and the shape of target_bbox is same as the shape of the predicted_location, F is the number of the foreground anchors. The predicted_scores is a 2D Tensor with shape [F + B, 1], and the shape of target_label is same as the shape of the predicted_scores, B is the number of the background anchors, the F and B is depends on the input of this operator. Bbox_inside_weight represents whether the predicted loc is fake_fg or not and the shape is [F, 4]. Examples: .. code-block:: python bbox_pred = layers.data(name='bbox_pred', shape=[100, 4], append_batch_size=False, dtype='float32') cls_logits = layers.data(name='cls_logits', shape=[100, 1], append_batch_size=False, dtype='float32') anchor_box = layers.data(name='anchor_box', shape=[20, 4], append_batch_size=False, dtype='float32') gt_boxes = layers.data(name='gt_boxes', shape=[10, 4], append_batch_size=False, dtype='float32') loc_pred, score_pred, loc_target, score_target, bbox_inside_weight = fluid.layers.rpn_target_assign(bbox_pred=bbox_pred, cls_logits=cls_logits, anchor_box=anchor_box, gt_boxes=gt_boxes) """ helper = LayerHelper('rpn_target_assign', **locals()) # Assign target label to anchors loc_index = helper.create_variable_for_type_inference(dtype='int32') score_index = helper.create_variable_for_type_inference(dtype='int32') target_label = helper.create_variable_for_type_inference(dtype='int32') target_bbox = helper.create_variable_for_type_inference( dtype=anchor_box.dtype) bbox_inside_weight = helper.create_variable_for_type_inference( dtype=anchor_box.dtype) helper.append_op( type="rpn_target_assign", inputs={ 'Anchor': anchor_box, 'GtBoxes': gt_boxes, 'IsCrowd': is_crowd, 'ImInfo': im_info }, outputs={ 'LocationIndex': loc_index, 'ScoreIndex': score_index, 'TargetLabel': target_label, 'TargetBBox': target_bbox, 'BBoxInsideWeight': bbox_inside_weight }, attrs={ 'rpn_batch_size_per_im': rpn_batch_size_per_im, 'rpn_straddle_thresh': rpn_straddle_thresh, 'rpn_positive_overlap': rpn_positive_overlap, 'rpn_negative_overlap': rpn_negative_overlap, 'rpn_fg_fraction': rpn_fg_fraction, 'use_random': use_random }) loc_index.stop_gradient = True score_index.stop_gradient = True target_label.stop_gradient = True target_bbox.stop_gradient = True bbox_inside_weight.stop_gradient = True cls_logits = nn.reshape(x=cls_logits, shape=(-1, 1)) bbox_pred = nn.reshape(x=bbox_pred, shape=(-1, 4)) predicted_cls_logits = nn.gather(cls_logits, score_index) predicted_bbox_pred = nn.gather(bbox_pred, loc_index) return predicted_cls_logits, predicted_bbox_pred, target_label, target_bbox, bbox_inside_weight def detection_output(loc, scores, prior_box, prior_box_var, background_label=0, nms_threshold=0.3, nms_top_k=400, keep_top_k=200, score_threshold=0.01, nms_eta=1.0): """ **Detection Output Layer for Single Shot Multibox Detector (SSD).** This operation is to get the detection results by performing following two steps: 1. Decode input bounding box predictions according to the prior boxes. 2. Get the final detection results by applying multi-class non maximum suppression (NMS). Please note, this operation doesn't clip the final output bounding boxes to the image window. Args: loc(Variable): A 3-D Tensor with shape [N, M, 4] represents the predicted locations of M bounding bboxes. N is the batch size, and each bounding box has four coordinate values and the layout is [xmin, ymin, xmax, ymax]. scores(Variable): A 3-D Tensor with shape [N, M, C] represents the predicted confidence predictions. N is the batch size, C is the class number, M is number of bounding boxes. For each category there are total M scores which corresponding M bounding boxes. prior_box(Variable): A 2-D Tensor with shape [M, 4] holds M boxes, each box is represented as [xmin, ymin, xmax, ymax], [xmin, ymin] is the left top coordinate of the anchor box, if the input is image feature map, they are close to the origin of the coordinate system. [xmax, ymax] is the right bottom coordinate of the anchor box. prior_box_var(Variable): A 2-D Tensor with shape [M, 4] holds M group of variance. background_label(float): The index of background label, the background label will be ignored. If set to -1, then all categories will be considered. nms_threshold(float): The threshold to be used in NMS. nms_top_k(int): Maximum number of detections to be kept according to the confidences aftern the filtering detections based on score_threshold. keep_top_k(int): Number of total bboxes to be kept per image after NMS step. -1 means keeping all bboxes after NMS step. score_threshold(float): Threshold to filter out bounding boxes with low confidence score. If not provided, consider all boxes. nms_eta(float): The parameter for adaptive NMS. Returns: Variable: The detection outputs is a LoDTensor with shape [No, 6]. Each row has six values: [label, confidence, xmin, ymin, xmax, ymax]. `No` is the total number of detections in this mini-batch. For each instance, the offsets in first dimension are called LoD, the offset number is N + 1, N is the batch size. The i-th image has `LoD[i + 1] - LoD[i]` detected results, if it is 0, the i-th image has no detected results. If all images have not detected results, LoD will be set to {1}, and output tensor only contains one value, which is -1. (After version 1.3, when no boxes detected, the lod is changed from {0} to {1}.) Examples: .. code-block:: python pb = layers.data(name='prior_box', shape=[10, 4], append_batch_size=False, dtype='float32') pbv = layers.data(name='prior_box_var', shape=[10, 4], append_batch_size=False, dtype='float32') loc = layers.data(name='target_box', shape=[2, 21, 4], append_batch_size=False, dtype='float32') scores = layers.data(name='scores', shape=[2, 21, 10], append_batch_size=False, dtype='float32') nmsed_outs = fluid.layers.detection_output(scores=scores, loc=loc, prior_box=pb, prior_box_var=pbv) """ helper = LayerHelper("detection_output", **locals()) decoded_box = box_coder( prior_box=prior_box, prior_box_var=prior_box_var, target_box=loc, code_type='decode_center_size') scores = nn.softmax(input=scores) scores = nn.transpose(scores, perm=[0, 2, 1]) scores.stop_gradient = True nmsed_outs = helper.create_variable_for_type_inference( dtype=decoded_box.dtype) helper.append_op( type="multiclass_nms", inputs={'Scores': scores, 'BBoxes': decoded_box}, outputs={'Out': nmsed_outs}, attrs={ 'background_label': 0, 'nms_threshold': nms_threshold, 'nms_top_k': nms_top_k, 'keep_top_k': keep_top_k, 'score_threshold': score_threshold, 'nms_eta': 1.0 }) nmsed_outs.stop_gradient = True return nmsed_outs @templatedoc() def iou_similarity(x, y, name=None): """ ${comment} Args: x(${x_type}): ${x_comment} y(${y_type}): ${y_comment} Returns: out(${out_type}): ${out_comment} """ helper = LayerHelper("iou_similarity", **locals()) if name is None: out = helper.create_variable_for_type_inference(dtype=x.dtype) else: out = helper.create_variable( name=name, dtype=x.dtype, persistable=False) helper.append_op( type="iou_similarity", inputs={"X": x, "Y": y}, attrs={}, outputs={"Out": out}) return out @templatedoc() def box_coder(prior_box, prior_box_var, target_box, code_type="encode_center_size", box_normalized=True, name=None): """ ${comment} Args: prior_box(${prior_box_type}): ${prior_box_comment} prior_box_var(${prior_box_var_type}): ${prior_box_var_comment} target_box(${target_box_type}): ${target_box_comment} code_type(${code_type_type}): ${code_type_comment} box_normalized(${box_normalized_type}): ${box_normalized_comment} Returns: output_box(${output_box_type}): ${output_box_comment} """ helper = LayerHelper("box_coder", **locals()) if name is None: output_box = helper.create_variable_for_type_inference( dtype=prior_box.dtype) else: output_box = helper.create_variable( name=name, dtype=prior_box.dtype, persistable=False) helper.append_op( type="box_coder", inputs={ "PriorBox": prior_box, "PriorBoxVar": prior_box_var, "TargetBox": target_box }, attrs={"code_type": code_type, "box_normalized": box_normalized}, outputs={"OutputBox": output_box}) return output_box @templatedoc() def polygon_box_transform(input, name=None): """ ${comment} Args: input(${input_type}): ${input_comment} Returns: output(${output_type}): ${output_comment} """ helper = LayerHelper("polygon_box_transform", **locals()) if name is None: output = helper.create_variable_for_type_inference(dtype=input.dtype) else: output = helper.create_variable( name=name, dtype=prior_box.input, persistable=False) helper.append_op( type="polygon_box_transform", inputs={"Input": input}, attrs={}, outputs={"Output": output}) return output @templatedoc(op_type="yolov3_loss") def yolov3_loss(x, gtbox, gtlabel, anchors, class_num, ignore_thresh, loss_weight_xy=None, loss_weight_wh=None, loss_weight_conf_target=None, loss_weight_conf_notarget=None, loss_weight_class=None, name=None): """ ${comment} Args: x (Variable): ${x_comment} gtbox (Variable): groud truth boxes, should be in shape of [N, B, 4], in the third dimenstion, x, y, w, h should be stored and x, y, w, h should be relative value of input image. N is the batch number and B is the max box number in an image. gtlabel (Variable): class id of ground truth boxes, shoud be ins shape of [N, B]. anchors (list|tuple): ${anchors_comment} class_num (int): ${class_num_comment} ignore_thresh (float): ${ignore_thresh_comment} loss_weight_xy (float|None): ${loss_weight_xy_comment} loss_weight_wh (float|None): ${loss_weight_wh_comment} loss_weight_conf_target (float|None): ${loss_weight_conf_target_comment} loss_weight_conf_notarget (float|None): ${loss_weight_conf_notarget_comment} loss_weight_class (float|None): ${loss_weight_class_comment} name (string): the name of yolov3 loss Returns: Variable: A 1-D tensor with shape [1], the value of yolov3 loss Raises: TypeError: Input x of yolov3_loss must be Variable TypeError: Input gtbox of yolov3_loss must be Variable" TypeError: Input gtlabel of yolov3_loss must be Variable" TypeError: Attr anchors of yolov3_loss must be list or tuple TypeError: Attr class_num of yolov3_loss must be an integer TypeError: Attr ignore_thresh of yolov3_loss must be a float number Examples: .. code-block:: python x = fluid.layers.data(name='x', shape=[255, 13, 13], dtype='float32') gtbox = fluid.layers.data(name='gtbox', shape=[6, 5], dtype='float32') gtlabel = fluid.layers.data(name='gtlabel', shape=[6, 1], dtype='int32') anchors = [10, 13, 16, 30, 33, 23] loss = fluid.layers.yolov3_loss(x=x, gtbox=gtbox, class_num=80 anchors=anchors, ignore_thresh=0.5) """ helper = LayerHelper('yolov3_loss', **locals()) if not isinstance(x, Variable): raise TypeError("Input x of yolov3_loss must be Variable") if not isinstance(gtbox, Variable): raise TypeError("Input gtbox of yolov3_loss must be Variable") if not isinstance(gtlabel, Variable): raise TypeError("Input gtlabel of yolov3_loss must be Variable") if not isinstance(anchors, list) and not isinstance(anchors, tuple): raise TypeError("Attr anchors of yolov3_loss must be list or tuple") if not isinstance(class_num, int): raise TypeError("Attr class_num of yolov3_loss must be an integer") if not isinstance(ignore_thresh, float): raise TypeError( "Attr ignore_thresh of yolov3_loss must be a float number") if name is None: loss = helper.create_variable_for_type_inference(dtype=x.dtype) else: loss = helper.create_variable( name=name, dtype=x.dtype, persistable=False) attrs = { "anchors": anchors, "class_num": class_num, "ignore_thresh": ignore_thresh, } if loss_weight_xy is not None and isinstance(loss_weight_xy, float): self.attrs['loss_weight_xy'] = loss_weight_xy if loss_weight_wh is not None and isinstance(loss_weight_wh, float): self.attrs['loss_weight_wh'] = loss_weight_wh if loss_weight_conf_target is not None and isinstance( loss_weight_conf_target, float): self.attrs['loss_weight_conf_target'] = loss_weight_conf_target if loss_weight_conf_notarget is not None and isinstance( loss_weight_conf_notarget, float): self.attrs['loss_weight_conf_notarget'] = loss_weight_conf_notarget if loss_weight_class is not None and isinstance(loss_weight_class, float): self.attrs['loss_weight_class'] = loss_weight_class helper.append_op( type='yolov3_loss', inputs={"X": x, "GTBox": gtbox, "GTLabel": gtlabel}, outputs={'Loss': loss}, attrs=attrs) return loss @templatedoc() def detection_map(detect_res, label, class_num, background_label=0, overlap_threshold=0.3, evaluate_difficult=True, has_state=None, input_states=None, out_states=None, ap_version='integral'): """ ${comment} Args: detect_res: ${detect_res_comment} label: ${label_comment} class_num: ${class_num_comment} background_label: ${background_label_comment} overlap_threshold: ${overlap_threshold_comment} evaluate_difficult: ${evaluate_difficult_comment} has_state: ${has_state_comment} input_states: If not None, It contains 3 elements: 1. pos_count ${pos_count_comment}. 2. true_pos ${true_pos_comment}. 3. false_pos ${false_pos_comment}. out_states: If not None, it contains 3 elements. 1. accum_pos_count ${accum_pos_count_comment}. 2. accum_true_pos ${accum_true_pos_comment}. 3. accum_false_pos ${accum_false_pos_comment}. ap_version: ${ap_type_comment} Returns: ${map_comment} Examples: .. code-block:: python detect_res = fluid.layers.data( name='detect_res', shape=[10, 6], append_batch_size=False, dtype='float32') label = fluid.layers.data( name='label', shape=[10, 6], append_batch_size=False, dtype='float32') map_out = fluid.layers.detection_map(detect_res, label, 21) """ helper = LayerHelper("detection_map", **locals()) def __create_var(type): return helper.create_variable_for_type_inference(dtype=type) map_out = __create_var('float32') accum_pos_count_out = out_states[0] if out_states else __create_var('int32') accum_true_pos_out = out_states[1] if out_states else __create_var( 'float32') accum_false_pos_out = out_states[2] if out_states else __create_var( 'float32') pos_count = input_states[0] if input_states else None true_pos = input_states[1] if input_states else None false_pos = input_states[2] if input_states else None helper.append_op( type="detection_map", inputs={ 'Label': label, 'DetectRes': detect_res, 'HasState': has_state, 'PosCount': pos_count, 'TruePos': true_pos, 'FalsePos': false_pos }, outputs={ 'MAP': map_out, 'AccumPosCount': accum_pos_count_out, 'AccumTruePos': accum_true_pos_out, 'AccumFalsePos': accum_false_pos_out }, attrs={ 'overlap_threshold': overlap_threshold, 'evaluate_difficult': evaluate_difficult, 'ap_type': ap_version, 'class_num': class_num, }) return map_out def bipartite_match(dist_matrix, match_type=None, dist_threshold=None, name=None): """ This operator implements a greedy bipartite matching algorithm, which is used to obtain the matching with the maximum distance based on the input distance matrix. For input 2D matrix, the bipartite matching algorithm can find the matched column for each row (matched means the largest distance), also can find the matched row for each column. And this operator only calculate matched indices from column to row. For each instance, the number of matched indices is the column number of the input distance matrix. There are two outputs, matched indices and distance. A simple description, this algorithm matched the best (maximum distance) row entity to the column entity and the matched indices are not duplicated in each row of ColToRowMatchIndices. If the column entity is not matched any row entity, set -1 in ColToRowMatchIndices. NOTE: the input DistMat can be LoDTensor (with LoD) or Tensor. If LoDTensor with LoD, the height of ColToRowMatchIndices is batch size. If Tensor, the height of ColToRowMatchIndices is 1. NOTE: This API is a very low level API. It is used by :code:`ssd_loss` layer. Please consider to use :code:`ssd_loss` instead. Args: dist_matrix(Variable): This input is a 2-D LoDTensor with shape [K, M]. It is pair-wise distance matrix between the entities represented by each row and each column. For example, assumed one entity is A with shape [K], another entity is B with shape [M]. The dist_matrix[i][j] is the distance between A[i] and B[j]. The bigger the distance is, the better matching the pairs are. NOTE: This tensor can contain LoD information to represent a batch of inputs. One instance of this batch can contain different numbers of entities. match_type(string|None): The type of matching method, should be 'bipartite' or 'per_prediction'. [default 'bipartite']. dist_threshold(float|None): If `match_type` is 'per_prediction', this threshold is to determine the extra matching bboxes based on the maximum distance, 0.5 by default. Returns: tuple: a tuple with two elements is returned. The first is matched_indices, the second is matched_distance. The matched_indices is a 2-D Tensor with shape [N, M] in int type. N is the batch size. If match_indices[i][j] is -1, it means B[j] does not match any entity in i-th instance. Otherwise, it means B[j] is matched to row match_indices[i][j] in i-th instance. The row number of i-th instance is saved in match_indices[i][j]. The matched_distance is a 2-D Tensor with shape [N, M] in float type . N is batch size. If match_indices[i][j] is -1, match_distance[i][j] is also -1.0. Otherwise, assumed match_distance[i][j] = d, and the row offsets of each instance are called LoD. Then match_distance[i][j] = dist_matrix[d+LoD[i]][j]. Examples: >>> x = fluid.layers.data(name='x', shape=[4], dtype='float32') >>> y = fluid.layers.data(name='y', shape=[4], dtype='float32') >>> iou = fluid.layers.iou_similarity(x=x, y=y) >>> matched_indices, matched_dist = fluid.layers.bipartite_match(iou) """ helper = LayerHelper('bipartite_match', **locals()) match_indices = helper.create_variable_for_type_inference(dtype='int32') match_distance = helper.create_variable_for_type_inference( dtype=dist_matrix.dtype) helper.append_op( type='bipartite_match', inputs={'DistMat': dist_matrix}, attrs={ 'match_type': match_type, 'dist_threshold': dist_threshold, }, outputs={ 'ColToRowMatchIndices': match_indices, 'ColToRowMatchDist': match_distance }) return match_indices, match_distance def target_assign(input, matched_indices, negative_indices=None, mismatch_value=None, name=None): """ This operator can be, for given the target bounding boxes or labels, to assign classification and regression targets to each prediction as well as weights to prediction. The weights is used to specify which prediction would not contribute to training loss. For each instance, the output `out` and`out_weight` are assigned based on `match_indices` and `negative_indices`. Assumed that the row offset for each instance in `input` is called lod, this operator assigns classification/regression targets by performing the following steps: 1. Assigning all outpts based on `match_indices`: .. code-block:: text If id = match_indices[i][j] > 0, out[i][j][0 : K] = X[lod[i] + id][j % P][0 : K] out_weight[i][j] = 1. Otherwise, out[j][j][0 : K] = {mismatch_value, mismatch_value, ...} out_weight[i][j] = 0. 2. Assigning out_weight based on `neg_indices` if `neg_indices` is provided: Assumed that the row offset for each instance in `neg_indices` is called neg_lod, for i-th instance and each `id` of neg_indices in this instance: .. code-block:: text out[i][id][0 : K] = {mismatch_value, mismatch_value, ...} out_weight[i][id] = 1.0 Args: inputs (Variable): This input is a 3D LoDTensor with shape [M, P, K]. matched_indices (Variable): Tensor), The input matched indices is 2D Tenosr with shape [N, P], If MatchIndices[i][j] is -1, the j-th entity of column is not matched to any entity of row in i-th instance. negative_indices (Variable): The input negative example indices are an optional input with shape [Neg, 1] and int32 type, where Neg is the total number of negative example indices. mismatch_value (float32): Fill this value to the mismatched location. Returns: tuple: A tuple(out, out_weight) is returned. out is a 3D Tensor with shape [N, P, K], N and P is the same as they are in `neg_indices`, K is the same as it in input of X. If `match_indices[i][j]`. out_weight is the weight for output with the shape of [N, P, 1]. Examples: .. code-block:: python matched_indices, matched_dist = fluid.layers.bipartite_match(iou) gt = layers.data( name='gt', shape=[1, 1], dtype='int32', lod_level=1) trg, trg_weight = layers.target_assign( gt, matched_indices, mismatch_value=0) """ helper = LayerHelper('target_assign', **locals()) out = helper.create_variable_for_type_inference(dtype=input.dtype) out_weight = helper.create_variable_for_type_inference(dtype='float32') helper.append_op( type='target_assign', inputs={ 'X': input, 'MatchIndices': matched_indices, 'NegIndices': negative_indices }, outputs={'Out': out, 'OutWeight': out_weight}, attrs={'mismatch_value': mismatch_value}) return out, out_weight def ssd_loss(location, confidence, gt_box, gt_label, prior_box, prior_box_var=None, background_label=0, overlap_threshold=0.5, neg_pos_ratio=3.0, neg_overlap=0.5, loc_loss_weight=1.0, conf_loss_weight=1.0, match_type='per_prediction', mining_type='max_negative', normalize=True, sample_size=None): """ **Multi-box loss layer for object detection algorithm of SSD** This layer is to compute dection loss for SSD given the location offset predictions, confidence predictions, prior boxes and ground-truth boudding boxes and labels, and the type of hard example mining. The returned loss is a weighted sum of the localization loss (or regression loss) and confidence loss (or classification loss) by performing the following steps: 1. Find matched bounding box by bipartite matching algorithm. 1.1 Compute IOU similarity between ground-truth boxes and prior boxes. 1.2 Compute matched boundding box by bipartite matching algorithm. 2. Compute confidence for mining hard examples 2.1. Get the target label based on matched indices. 2.2. Compute confidence loss. 3. Apply hard example mining to get the negative example indices and update the matched indices. 4. Assign classification and regression targets 4.1. Encoded bbox according to the prior boxes. 4.2. Assign regression targets. 4.3. Assign classification targets. 5. Compute the overall objective loss. 5.1 Compute confidence loss. 5.1 Compute localization loss. 5.3 Compute the overall weighted loss. Args: location (Variable): The location predictions are a 3D Tensor with shape [N, Np, 4], N is the batch size, Np is total number of predictions for each instance. 4 is the number of coordinate values, the layout is [xmin, ymin, xmax, ymax]. confidence (Variable): The confidence predictions are a 3D Tensor with shape [N, Np, C], N and Np are the same as they are in `location`, C is the class number. gt_box (Variable): The ground-truth boudding boxes (bboxes) are a 2D LoDTensor with shape [Ng, 4], Ng is the total number of ground-truth bboxes of mini-batch input. gt_label (Variable): The ground-truth labels are a 2D LoDTensor with shape [Ng, 1]. prior_box (Variable): The prior boxes are a 2D Tensor with shape [Np, 4]. prior_box_var (Variable): The variance of prior boxes are a 2D Tensor with shape [Np, 4]. background_label (int): The index of background label, 0 by default. overlap_threshold (float): If match_type is 'per_prediction', use `overlap_threshold` to determine the extra matching bboxes when finding matched boxes. 0.5 by default. neg_pos_ratio (float): The ratio of the negative boxes to the positive boxes, used only when mining_type is 'max_negative', 3.0 by defalut. neg_overlap (float): The negative overlap upper bound for the unmatched predictions. Use only when mining_type is 'max_negative', 0.5 by default. loc_loss_weight (float): Weight for localization loss, 1.0 by default. conf_loss_weight (float): Weight for confidence loss, 1.0 by default. match_type (str): The type of matching method during training, should be 'bipartite' or 'per_prediction', 'per_prediction' by defalut. mining_type (str): The hard example mining type, should be 'hard_example' or 'max_negative', now only support `max_negative`. normalize (bool): Whether to normalize the SSD loss by the total number of output locations, True by default. sample_size (int): The max sample size of negative box, used only when mining_type is 'hard_example'. Returns: The weighted sum of the localization loss and confidence loss, with \ shape [N * Np, 1], N and Np are the same as they are in `location`. Raises: ValueError: If mining_type is 'hard_example', now only support mining \ type of `max_negative`. Examples: >>> pb = fluid.layers.data( >>> name='prior_box', >>> shape=[10, 4], >>> append_batch_size=False, >>> dtype='float32') >>> pbv = fluid.layers.data( >>> name='prior_box_var', >>> shape=[10, 4], >>> append_batch_size=False, >>> dtype='float32') >>> loc = fluid.layers.data(name='target_box', shape=[10, 4], dtype='float32') >>> scores = fluid.layers.data(name='scores', shape=[10, 21], dtype='float32') >>> gt_box = fluid.layers.data( >>> name='gt_box', shape=[4], lod_level=1, dtype='float32') >>> gt_label = fluid.layers.data( >>> name='gt_label', shape=[1], lod_level=1, dtype='float32') >>> loss = fluid.layers.ssd_loss(loc, scores, gt_box, gt_label, pb, pbv) """ helper = LayerHelper('ssd_loss', **locals()) if mining_type != 'max_negative': raise ValueError("Only support mining_type == max_negative now.") num, num_prior, num_class = confidence.shape conf_shape = nn.shape(confidence) def __reshape_to_2d(var): return nn.flatten(x=var, axis=2) # 1. Find matched boundding box by prior box. # 1.1 Compute IOU similarity between ground-truth boxes and prior boxes. iou = iou_similarity(x=gt_box, y=prior_box) # 1.2 Compute matched boundding box by bipartite matching algorithm. matched_indices, matched_dist = bipartite_match(iou, match_type, overlap_threshold) # 2. Compute confidence for mining hard examples # 2.1. Get the target label based on matched indices gt_label = nn.reshape( x=gt_label, shape=(len(gt_label.shape) - 1) * (0, ) + (-1, 1)) gt_label.stop_gradient = True target_label, _ = target_assign( gt_label, matched_indices, mismatch_value=background_label) # 2.2. Compute confidence loss. # Reshape confidence to 2D tensor. confidence = __reshape_to_2d(confidence) target_label = tensor.cast(x=target_label, dtype='int64') target_label = __reshape_to_2d(target_label) target_label.stop_gradient = True conf_loss = nn.softmax_with_cross_entropy(confidence, target_label) # 3. Mining hard examples actual_shape = nn.slice(conf_shape, axes=[0], starts=[0], ends=[2]) actual_shape.stop_gradient = True conf_loss = nn.reshape( x=conf_loss, shape=(num, num_prior), actual_shape=actual_shape) conf_loss.stop_gradient = True neg_indices = helper.create_variable_for_type_inference(dtype='int32') dtype = matched_indices.dtype updated_matched_indices = helper.create_variable_for_type_inference( dtype=dtype) helper.append_op( type='mine_hard_examples', inputs={ 'ClsLoss': conf_loss, 'LocLoss': None, 'MatchIndices': matched_indices, 'MatchDist': matched_dist, }, outputs={ 'NegIndices': neg_indices, 'UpdatedMatchIndices': updated_matched_indices }, attrs={ 'neg_pos_ratio': neg_pos_ratio, 'neg_dist_threshold': neg_overlap, 'mining_type': mining_type, 'sample_size': sample_size, }) # 4. Assign classification and regression targets # 4.1. Encoded bbox according to the prior boxes. encoded_bbox = box_coder( prior_box=prior_box, prior_box_var=prior_box_var, target_box=gt_box, code_type='encode_center_size') # 4.2. Assign regression targets target_bbox, target_loc_weight = target_assign( encoded_bbox, updated_matched_indices, mismatch_value=background_label) # 4.3. Assign classification targets target_label, target_conf_weight = target_assign( gt_label, updated_matched_indices, negative_indices=neg_indices, mismatch_value=background_label) # 5. Compute loss. # 5.1 Compute confidence loss. target_label = __reshape_to_2d(target_label) target_label = tensor.cast(x=target_label, dtype='int64') conf_loss = nn.softmax_with_cross_entropy(confidence, target_label) target_conf_weight = __reshape_to_2d(target_conf_weight) conf_loss = conf_loss * target_conf_weight # the target_label and target_conf_weight do not have gradient. target_label.stop_gradient = True target_conf_weight.stop_gradient = True # 5.2 Compute regression loss. location = __reshape_to_2d(location) target_bbox = __reshape_to_2d(target_bbox) loc_loss = nn.smooth_l1(location, target_bbox) target_loc_weight = __reshape_to_2d(target_loc_weight) loc_loss = loc_loss * target_loc_weight # the target_bbox and target_loc_weight do not have gradient. target_bbox.stop_gradient = True target_loc_weight.stop_gradient = True # 5.3 Compute overall weighted loss. loss = conf_loss_weight * conf_loss + loc_loss_weight * loc_loss # reshape to [N, Np], N is the batch size and Np is the prior box number. loss = nn.reshape(x=loss, shape=(num, num_prior), actual_shape=actual_shape) loss = nn.reduce_sum(loss, dim=1, keep_dim=True) if normalize: normalizer = nn.reduce_sum(target_loc_weight) loss = loss / normalizer return loss def prior_box(input, image, min_sizes, max_sizes=None, aspect_ratios=[1.], variance=[0.1, 0.1, 0.2, 0.2], flip=False, clip=False, steps=[0.0, 0.0], offset=0.5, name=None, min_max_aspect_ratios_order=False): """ **Prior Box Operator** Generate prior boxes for SSD(Single Shot MultiBox Detector) algorithm. Each position of the input produce N prior boxes, N is determined by the count of min_sizes, max_sizes and aspect_ratios, The size of the box is in range(min_size, max_size) interval, which is generated in sequence according to the aspect_ratios. Args: input(Variable): The Input Variables, the format is NCHW. image(Variable): The input image data of PriorBoxOp, the layout is NCHW. min_sizes(list|tuple|float value): min sizes of generated prior boxes. max_sizes(list|tuple|None): max sizes of generated prior boxes. Default: None. aspect_ratios(list|tuple|float value): the aspect ratios of generated prior boxes. Default: [1.]. variance(list|tuple): the variances to be encoded in prior boxes. Default:[0.1, 0.1, 0.2, 0.2]. flip(bool): Whether to flip aspect ratios. Default:False. clip(bool): Whether to clip out-of-boundary boxes. Default: False. step(list|turple): Prior boxes step across width and height, If step[0] == 0.0/step[1] == 0.0, the prior boxes step across height/weight of the input will be automatically calculated. Default: [0., 0.] offset(float): Prior boxes center offset. Default: 0.5 name(str): Name of the prior box op. Default: None. min_max_aspect_ratios_order(bool): If set True, the output prior box is in order of [min, max, aspect_ratios], which is consistent with Caffe. Please note, this order affects the weights order of convolution layer followed by and does not affect the final detection results. Default: False. Returns: tuple: A tuple with two Variable (boxes, variances) boxes: the output prior boxes of PriorBox. The layout is [H, W, num_priors, 4]. H is the height of input, W is the width of input, num_priors is the total box count of each position of input. variances: the expanded variances of PriorBox. The layout is [H, W, num_priors, 4]. H is the height of input, W is the width of input num_priors is the total box count of each position of input Examples: .. code-block:: python box, var = fluid.layers.prior_box( input=conv1, image=images, min_sizes=[100.], flip=True, clip=True) """ helper = LayerHelper("prior_box", **locals()) dtype = helper.input_dtype() def _is_list_or_tuple_(data): return (isinstance(data, list) or isinstance(data, tuple)) if not _is_list_or_tuple_(min_sizes): min_sizes = [min_sizes] if not _is_list_or_tuple_(aspect_ratios): aspect_ratios = [aspect_ratios] if not (_is_list_or_tuple_(steps) and len(steps) == 2): raise ValueError('steps should be a list or tuple ', 'with length 2, (step_width, step_height).') min_sizes = list(map(float, min_sizes)) aspect_ratios = list(map(float, aspect_ratios)) steps = list(map(float, steps)) attrs = { 'min_sizes': min_sizes, 'aspect_ratios': aspect_ratios, 'variances': variance, 'flip': flip, 'clip': clip, 'step_w': steps[0], 'step_h': steps[1], 'offset': offset, 'min_max_aspect_ratios_order': min_max_aspect_ratios_order } if max_sizes is not None and len(max_sizes) > 0 and max_sizes[0] > 0: if not _is_list_or_tuple_(max_sizes): max_sizes = [max_sizes] attrs['max_sizes'] = max_sizes box = helper.create_variable_for_type_inference(dtype) var = helper.create_variable_for_type_inference(dtype) helper.append_op( type="prior_box", inputs={"Input": input, "Image": image}, outputs={"Boxes": box, "Variances": var}, attrs=attrs, ) box.stop_gradient = True var.stop_gradient = True return box, var def density_prior_box(input, image, densities=None, fixed_sizes=None, fixed_ratios=None, variance=[0.1, 0.1, 0.2, 0.2], clip=False, steps=[0.0, 0.0], offset=0.5, flatten_to_2d=False, name=None): """ **Density Prior Box Operator** Generate density prior boxes for SSD(Single Shot MultiBox Detector) algorithm. Each position of the input produce N prior boxes, N is determined by the count of densities, fixed_sizes and fixed_ratios. Boxes center at grid points around each input position is generated by this operator, and the grid points is determined by densities and the count of density prior box is determined by fixed_sizes and fixed_ratios. Obviously, the number of fixed_sizes is equal to the number of densities. For densities_i in densities: N_density_prior_box =sum(N_fixed_ratios * densities_i^2), Args: input(Variable): The Input Variables, the format is NCHW. image(Variable): The input image data of PriorBoxOp, the layout is NCHW. densities(list|tuple|None): the densities of generated density prior boxes, this attribute should be a list or tuple of integers. Default: None. fixed_sizes(list|tuple|None): the fixed sizes of generated density prior boxes, this attribute should a list or tuple of same length with :attr:`densities`. Default: None. fixed_ratios(list|tuple|None): the fixed ratios of generated density prior boxes, if this attribute is not set and :attr:`densities` and :attr:`fix_sizes` is set, :attr:`aspect_ratios` will be used to generate density prior boxes. variance(list|tuple): the variances to be encoded in density prior boxes. Default:[0.1, 0.1, 0.2, 0.2]. clip(bool): Whether to clip out-of-boundary boxes. Default: False. step(list|turple): Prior boxes step across width and height, If step[0] == 0.0/step[1] == 0.0, the density prior boxes step across height/weight of the input will be automatically calculated. Default: [0., 0.] offset(float): Prior boxes center offset. Default: 0.5 flatten_to_2d(bool): Whether to flatten output prior boxes and variance to 2D shape, the second dim is 4. Default: False. name(str): Name of the density prior box op. Default: None. Returns: tuple: A tuple with two Variable (boxes, variances) boxes: the output density prior boxes of PriorBox. The layout is [H, W, num_priors, 4] when flatten_to_2d is False. The layout is [H * W * num_priors, 4] when flatten_to_2d is True. H is the height of input, W is the width of input, num_priors is the total box count of each position of input. variances: the expanded variances of PriorBox. The layout is [H, W, num_priors, 4] when flatten_to_2d is False. The layout is [H * W * num_priors, 4] when flatten_to_2d is True. H is the height of input, W is the width of input num_priors is the total box count of each position of input. Examples: .. code-block:: python box, var = fluid.layers.density_prior_box( input=conv1, image=images, densities=[4, 2, 1], fixed_sizes=[32.0, 64.0, 128.0], fixed_ratios=[1.], clip=True, flatten_to_2d=True) """ helper = LayerHelper("density_prior_box", **locals()) dtype = helper.input_dtype() def _is_list_or_tuple_(data): return (isinstance(data, list) or isinstance(data, tuple)) if not _is_list_or_tuple_(densities): raise TypeError('densities should be a list or a tuple or None.') if not _is_list_or_tuple_(fixed_sizes): raise TypeError('fixed_sizes should be a list or a tuple or None.') if not _is_list_or_tuple_(fixed_ratios): raise TypeError('fixed_ratios should be a list or a tuple or None.') if len(densities) != len(fixed_sizes): raise ValueError('densities and fixed_sizes length should be euqal.') if not (_is_list_or_tuple_(steps) and len(steps) == 2): raise ValueError('steps should be a list or tuple ', 'with length 2, (step_width, step_height).') densities = list(map(int, densities)) fixed_sizes = list(map(float, fixed_sizes)) fixed_ratios = list(map(float, fixed_ratios)) steps = list(map(float, steps)) attrs = { 'variances': variance, 'clip': clip, 'step_w': steps[0], 'step_h': steps[1], 'offset': offset, 'densities': densities, 'fixed_sizes': fixed_sizes, 'fixed_ratios': fixed_ratios, 'flatten_to_2d': flatten_to_2d, } box = helper.create_variable_for_type_inference(dtype) var = helper.create_variable_for_type_inference(dtype) helper.append_op( type="density_prior_box", inputs={"Input": input, "Image": image}, outputs={"Boxes": box, "Variances": var}, attrs=attrs, ) box.stop_gradient = True var.stop_gradient = True return box, var def multi_box_head(inputs, image, base_size, num_classes, aspect_ratios, min_ratio=None, max_ratio=None, min_sizes=None, max_sizes=None, steps=None, step_w=None, step_h=None, offset=0.5, variance=[0.1, 0.1, 0.2, 0.2], flip=True, clip=False, kernel_size=1, pad=0, stride=1, name=None, min_max_aspect_ratios_order=False): """ Generate prior boxes for SSD(Single Shot MultiBox Detector) algorithm. The details of this algorithm, please refer the section 2.2 of SSD paper `SSD: Single Shot MultiBox Detector `_ . Args: inputs(list|tuple): The list of input Variables, the format of all Variables is NCHW. image(Variable): The input image data of PriorBoxOp, the layout is NCHW. base_size(int): the base_size is used to get min_size and max_size according to min_ratio and max_ratio. num_classes(int): The number of classes. aspect_ratios(list|tuple): the aspect ratios of generated prior boxes. The length of input and aspect_ratios must be equal. min_ratio(int): the min ratio of generated prior boxes. max_ratio(int): the max ratio of generated prior boxes. min_sizes(list|tuple|None): If `len(inputs) <=2`, min_sizes must be set up, and the length of min_sizes should equal to the length of inputs. Default: None. max_sizes(list|tuple|None): If `len(inputs) <=2`, max_sizes must be set up, and the length of min_sizes should equal to the length of inputs. Default: None. steps(list|tuple): If step_w and step_h are the same, step_w and step_h can be replaced by steps. step_w(list|tuple): Prior boxes step across width. If step_w[i] == 0.0, the prior boxes step across width of the inputs[i] will be automatically calculated. Default: None. step_h(list|tuple): Prior boxes step across height, If step_h[i] == 0.0, the prior boxes step across height of the inputs[i] will be automatically calculated. Default: None. offset(float): Prior boxes center offset. Default: 0.5 variance(list|tuple): the variances to be encoded in prior boxes. Default:[0.1, 0.1, 0.2, 0.2]. flip(bool): Whether to flip aspect ratios. Default:False. clip(bool): Whether to clip out-of-boundary boxes. Default: False. kernel_size(int): The kernel size of conv2d. Default: 1. pad(int|list|tuple): The padding of conv2d. Default:0. stride(int|list|tuple): The stride of conv2d. Default:1, name(str): Name of the prior box layer. Default: None. min_max_aspect_ratios_order(bool): If set True, the output prior box is in order of [min, max, aspect_ratios], which is consistent with Caffe. Please note, this order affects the weights order of convolution layer followed by and does not affect the fininal detection results. Default: False. Returns: tuple: A tuple with four Variables. (mbox_loc, mbox_conf, boxes, variances) mbox_loc: The predicted boxes' location of the inputs. The layout is [N, H*W*Priors, 4]. where Priors is the number of predicted boxes each position of each input. mbox_conf: The predicted boxes' confidence of the inputs. The layout is [N, H*W*Priors, C]. where Priors is the number of predicted boxes each position of each input and C is the number of Classes. boxes: the output prior boxes of PriorBox. The layout is [num_priors, 4]. num_priors is the total box count of each position of inputs. variances: the expanded variances of PriorBox. The layout is [num_priors, 4]. num_priors is the total box count of each position of inputs Examples: .. code-block:: python mbox_locs, mbox_confs, box, var = fluid.layers.multi_box_head( inputs=[conv1, conv2, conv3, conv4, conv5, conv5], image=images, num_classes=21, min_ratio=20, max_ratio=90, aspect_ratios=[[2.], [2., 3.], [2., 3.], [2., 3.], [2.], [2.]], base_size=300, offset=0.5, flip=True, clip=True) """ def _reshape_with_axis_(input, axis=1): out = nn.flatten(x=input, axis=axis) return out def _is_list_or_tuple_(data): return (isinstance(data, list) or isinstance(data, tuple)) def _is_list_or_tuple_and_equal(data, length, err_info): if not (_is_list_or_tuple_(data) and len(data) == length): raise ValueError(err_info) if not _is_list_or_tuple_(inputs): raise ValueError('inputs should be a list or tuple.') num_layer = len(inputs) if num_layer <= 2: assert min_sizes is not None and max_sizes is not None assert len(min_sizes) == num_layer and len(max_sizes) == num_layer elif min_sizes is None and max_sizes is None: min_sizes = [] max_sizes = [] step = int(math.floor(((max_ratio - min_ratio)) / (num_layer - 2))) for ratio in six.moves.range(min_ratio, max_ratio + 1, step): min_sizes.append(base_size * ratio / 100.) max_sizes.append(base_size * (ratio + step) / 100.) min_sizes = [base_size * .10] + min_sizes max_sizes = [base_size * .20] + max_sizes if aspect_ratios: _is_list_or_tuple_and_equal( aspect_ratios, num_layer, 'aspect_ratios should be list or tuple, and the length of inputs ' 'and aspect_ratios should be the same.') if step_h: _is_list_or_tuple_and_equal( step_h, num_layer, 'step_h should be list or tuple, and the length of inputs and ' 'step_h should be the same.') if step_w: _is_list_or_tuple_and_equal( step_w, num_layer, 'step_w should be list or tuple, and the length of inputs and ' 'step_w should be the same.') if steps: _is_list_or_tuple_and_equal( steps, num_layer, 'steps should be list or tuple, and the length of inputs and ' 'step_w should be the same.') step_w = steps step_h = steps mbox_locs = [] mbox_confs = [] box_results = [] var_results = [] for i, input in enumerate(inputs): min_size = min_sizes[i] max_size = max_sizes[i] if not _is_list_or_tuple_(min_size): min_size = [min_size] if not _is_list_or_tuple_(max_size): max_size = [max_size] aspect_ratio = [] if aspect_ratios is not None: aspect_ratio = aspect_ratios[i] if not _is_list_or_tuple_(aspect_ratio): aspect_ratio = [aspect_ratio] step = [step_w[i] if step_w else 0.0, step_h[i] if step_w else 0.0] box, var = prior_box(input, image, min_size, max_size, aspect_ratio, variance, flip, clip, step, offset, None, min_max_aspect_ratios_order) box_results.append(box) var_results.append(var) num_boxes = box.shape[2] # get loc num_loc_output = num_boxes * 4 mbox_loc = nn.conv2d( input=input, num_filters=num_loc_output, filter_size=kernel_size, padding=pad, stride=stride) mbox_loc = nn.transpose(mbox_loc, perm=[0, 2, 3, 1]) compile_shape = [ mbox_loc.shape[0], cpt.floor_division( mbox_loc.shape[1] * mbox_loc.shape[2] * mbox_loc.shape[3], 4), 4 ] run_shape = tensor.assign(numpy.array([0, -1, 4]).astype("int32")) mbox_loc_flatten = nn.reshape( mbox_loc, shape=compile_shape, actual_shape=run_shape) mbox_locs.append(mbox_loc_flatten) # get conf num_conf_output = num_boxes * num_classes conf_loc = nn.conv2d( input=input, num_filters=num_conf_output, filter_size=kernel_size, padding=pad, stride=stride) conf_loc = nn.transpose(conf_loc, perm=[0, 2, 3, 1]) new_shape = [0, -1, num_classes] compile_shape = [ conf_loc.shape[0], cpt.floor_division(conf_loc.shape[1] * conf_loc.shape[2] * conf_loc.shape[3], num_classes), num_classes ] run_shape = tensor.assign( numpy.array([0, -1, num_classes]).astype("int32")) conf_loc_flatten = nn.reshape( conf_loc, shape=compile_shape, actual_shape=run_shape) mbox_confs.append(conf_loc_flatten) if len(box_results) == 1: box = box_results[0] var = var_results[0] mbox_locs_concat = mbox_locs[0] mbox_confs_concat = mbox_confs[0] else: reshaped_boxes = [] reshaped_vars = [] for i in range(len(box_results)): reshaped_boxes.append(_reshape_with_axis_(box_results[i], axis=3)) reshaped_vars.append(_reshape_with_axis_(var_results[i], axis=3)) box = tensor.concat(reshaped_boxes) var = tensor.concat(reshaped_vars) mbox_locs_concat = tensor.concat(mbox_locs, axis=1) mbox_confs_concat = tensor.concat(mbox_confs, axis=1) box.stop_gradient = True var.stop_gradient = True return mbox_locs_concat, mbox_confs_concat, box, var def anchor_generator(input, anchor_sizes=None, aspect_ratios=None, variance=[0.1, 0.1, 0.2, 0.2], stride=None, offset=0.5, name=None): """ **Anchor generator operator** Generate anchors for Faster RCNN algorithm. Each position of the input produce N anchors, N = size(anchor_sizes) * size(aspect_ratios). The order of generated anchors is firstly aspect_ratios loop then anchor_sizes loop. Args: input(Variable): The input feature map, the format is NCHW. anchor_sizes(list|tuple|float): The anchor sizes of generated anchors, given in absolute pixels e.g. [64., 128., 256., 512.]. For instance, the anchor size of 64 means the area of this anchor equals to 64**2. aspect_ratios(list|tuple|float): The height / width ratios of generated anchors, e.g. [0.5, 1.0, 2.0]. variance(list|tuple): The variances to be used in box regression deltas. Default:[0.1, 0.1, 0.2, 0.2]. stride(list|turple): The anchors stride across width and height,e.g. [16.0, 16.0] offset(float): Prior boxes center offset. Default: 0.5 name(str): Name of the prior box op. Default: None. Returns: Anchors(Variable),Variances(Variable): two variables: - Anchors(Variable): The output anchors with a layout of [H, W, num_anchors, 4]. \ H is the height of input, W is the width of input, \ num_anchors is the box count of each position. \ Each anchor is in (xmin, ymin, xmax, ymax) format an unnormalized. - Variances(Variable): The expanded variances of anchors \ with a layout of [H, W, num_priors, 4]. \ H is the height of input, W is the width of input \ num_anchors is the box count of each position. \ Each variance is in (xcenter, ycenter, w, h) format. Examples: .. code-block:: python anchor, var = anchor_generator( input=conv1, anchor_sizes=[64, 128, 256, 512], aspect_ratios=[0.5, 1.0, 2.0], variance=[0.1, 0.1, 0.2, 0.2], stride=[16.0, 16.0], offset=0.5) """ helper = LayerHelper("anchor_generator", **locals()) dtype = helper.input_dtype() def _is_list_or_tuple_(data): return (isinstance(data, list) or isinstance(data, tuple)) if not _is_list_or_tuple_(anchor_sizes): anchor_sizes = [anchor_sizes] if not _is_list_or_tuple_(aspect_ratios): aspect_ratios = [aspect_ratios] if not (_is_list_or_tuple_(stride) and len(stride) == 2): raise ValueError('stride should be a list or tuple ', 'with length 2, (stride_width, stride_height).') anchor_sizes = list(map(float, anchor_sizes)) aspect_ratios = list(map(float, aspect_ratios)) stride = list(map(float, stride)) attrs = { 'anchor_sizes': anchor_sizes, 'aspect_ratios': aspect_ratios, 'variances': variance, 'stride': stride, 'offset': offset } anchor = helper.create_variable_for_type_inference(dtype) var = helper.create_variable_for_type_inference(dtype) helper.append_op( type="anchor_generator", inputs={"Input": input}, outputs={"Anchors": anchor, "Variances": var}, attrs=attrs, ) anchor.stop_gradient = True var.stop_gradient = True return anchor, var def roi_perspective_transform(input, rois, transformed_height, transformed_width, spatial_scale=1.0): """ ROI perspective transform op. Args: input (Variable): The input of ROIPerspectiveTransformOp. The format of input tensor is NCHW. Where N is batch size, C is the number of input channels, H is the height of the feature, and W is the width of the feature. rois (Variable): ROIs (Regions of Interest) to be transformed. It should be a 2-D LoDTensor of shape (num_rois, 8). Given as [[x1, y1, x2, y2, x3, y3, x4, y4], ...], (x1, y1) is the top left coordinates, and (x2, y2) is the top right coordinates, and (x3, y3) is the bottom right coordinates, and (x4, y4) is the bottom left coordinates. transformed_height (integer): The height of transformed output. transformed_height (integer): The width of transformed output. spatial_scale (float): Spatial scale factor to scale ROI coords. Default: 1.0 Returns: Variable: The output of ROIPerspectiveTransformOp which is a 4-D tensor with shape (num_rois, channels, transformed_h, transformed_w). Examples: .. code-block:: python out = fluid.layers.roi_perspective_transform(input, rois, 7, 7, 1.0) """ helper = LayerHelper('roi_perspective_transform', **locals()) dtype = helper.input_dtype() out = helper.create_variable_for_type_inference(dtype) helper.append_op( type="roi_perspective_transform", inputs={"X": input, "ROIs": rois}, outputs={"Out": out}, attrs={ "transformed_height": transformed_height, "transformed_width": transformed_width, "spatial_scale": spatial_scale }) return out def generate_proposal_labels(rpn_rois, gt_classes, is_crowd, gt_boxes, im_info, batch_size_per_im=256, fg_fraction=0.25, fg_thresh=0.25, bg_thresh_hi=0.5, bg_thresh_lo=0.0, bbox_reg_weights=[0.1, 0.1, 0.2, 0.2], class_nums=None, use_random=True): """ ** Generate Proposal Labels of Faster-RCNN ** This operator can be, for given the GenerateProposalOp output bounding boxes and groundtruth, to sample foreground boxes and background boxes, and compute loss target. RpnRois is the output boxes of RPN and was processed by generate_proposal_op, these boxes were combined with groundtruth boxes and sampled according to batch_size_per_im and fg_fraction, If an instance with a groundtruth overlap greater than fg_thresh, then it was considered as a foreground sample. If an instance with a groundtruth overlap greater than bg_thresh_lo and lower than bg_thresh_hi, then it was considered as a background sample. After all foreground and background boxes are chosen (so called Rois), then we apply random sampling to make sure the number of foreground boxes is no more than batch_size_per_im * fg_fraction. For each box in Rois, we assign the classification (class label) and regression targets (box label) to it. Finally BboxInsideWeights and BboxOutsideWeights are used to specify whether it would contribute to training loss. Args: rpn_rois(Variable): A 2-D LoDTensor with shape [N, 4]. N is the number of the GenerateProposalOp's output, each element is a bounding box with [xmin, ymin, xmax, ymax] format. gt_classes(Variable): A 2-D LoDTensor with shape [M, 1]. M is the number of groundtruth, each element is a class label of groundtruth. is_crowd(Variable): A 2-D LoDTensor with shape [M, 1]. M is the number of groundtruth, each element is a flag indicates whether a groundtruth is crowd. gt_boxes(Variable): A 2-D LoDTensor with shape [M, 4]. M is the number of groundtruth, each element is a bounding box with [xmin, ymin, xmax, ymax] format. im_info(Variable): A 2-D LoDTensor with shape [B, 3]. B is the number of input images, each element consists of im_height, im_width, im_scale. batch_size_per_im(int): Batch size of rois per images. fg_fraction(float): Foreground fraction in total batch_size_per_im. fg_thresh(float): Overlap threshold which is used to chose foreground sample. bg_thresh_hi(float): Overlap threshold upper bound which is used to chose background sample. bg_thresh_lo(float): Overlap threshold lower bound which is used to chose background sample. bbox_reg_weights(list|tuple): Box regression weights. class_nums(int): Class number. use_random(bool): Use random sampling to choose foreground and background boxes. """ helper = LayerHelper('generate_proposal_labels', **locals()) rois = helper.create_variable_for_type_inference(dtype=rpn_rois.dtype) labels_int32 = helper.create_variable_for_type_inference( dtype=gt_classes.dtype) bbox_targets = helper.create_variable_for_type_inference( dtype=rpn_rois.dtype) bbox_inside_weights = helper.create_variable_for_type_inference( dtype=rpn_rois.dtype) bbox_outside_weights = helper.create_variable_for_type_inference( dtype=rpn_rois.dtype) helper.append_op( type="generate_proposal_labels", inputs={ 'RpnRois': rpn_rois, 'GtClasses': gt_classes, 'IsCrowd': is_crowd, 'GtBoxes': gt_boxes, 'ImInfo': im_info }, outputs={ 'Rois': rois, 'LabelsInt32': labels_int32, 'BboxTargets': bbox_targets, 'BboxInsideWeights': bbox_inside_weights, 'BboxOutsideWeights': bbox_outside_weights }, attrs={ 'batch_size_per_im': batch_size_per_im, 'fg_fraction': fg_fraction, 'fg_thresh': fg_thresh, 'bg_thresh_hi': bg_thresh_hi, 'bg_thresh_lo': bg_thresh_lo, 'bbox_reg_weights': bbox_reg_weights, 'class_nums': class_nums, 'use_random': use_random }) rois.stop_gradient = True labels_int32.stop_gradient = True bbox_targets.stop_gradient = True bbox_inside_weights.stop_gradient = True bbox_outside_weights.stop_gradient = True return rois, labels_int32, bbox_targets, bbox_inside_weights, bbox_outside_weights def generate_mask_labels(im_info, gt_classes, is_crowd, gt_segms, rois, labels_int32, num_classes, resolution): """ ** Generate Mask Labels for Mask-RCNN ** This operator can be, for given the RoIs and corresponding labels, to sample foreground RoIs. This mask branch also has a :math: `K \\times M^{2}` dimensional output targets for each foreground RoI, which encodes K binary masks of resolution M x M, one for each of the K classes. This mask targets are used to compute loss of mask branch. Please note, the data format of groud-truth segmentation, assumed the segmentations are as follows. The first instance has two gt objects. The second instance has one gt object, this object has two gt segmentations. .. code-block:: python #[ # [[[229.14, 370.9, 229.14, 370.9, ...]], # [[343.7, 139.85, 349.01, 138.46, ...]]], # 0-th instance # [[[500.0, 390.62, ...],[115.48, 187.86, ...]]] # 1-th instance #] batch_masks = [] for semgs in batch_semgs: gt_masks = [] for semg in semgs: gt_segm = [] for polys in semg: gt_segm.append(np.array(polys).reshape(-1, 2)) gt_masks.append(gt_segm) batch_masks.append(gt_masks) place = fluid.CPUPlace() feeder = fluid.DataFeeder(place=place, feed_list=feeds) feeder.feed(batch_masks) Args: im_info(Variable): A 2-D Tensor with shape [N, 3]. N is the batch size, each element is [height, width, scale] of image. Image scale is target_size) / original_size. gt_classes(Variable): A 2-D LoDTensor with shape [M, 1]. M is the total number of ground-truth, each element is a class label. is_crowd(Variable): A 2-D LoDTensor with shape as gt_classes, each element is a flag indicating whether a groundtruth is crowd. gt_segms(Variable): This input is a 2D LoDTensor with shape [S, 2], it's LoD level is 3. Usually users do not needs to understand LoD, The users should return correct data format in reader. The LoD[0] represents the gt objects number of each instance. LoD[1] represents the segmentation counts of each objects. LoD[2] represents the polygons number of each segmentation. S the total number of polygons coordinate points. Each element is (x, y) coordinate points. rois(Variable): A 2-D LoDTensor with shape [R, 4]. R is the total number of RoIs, each element is a bounding box with (xmin, ymin, xmax, ymax) format in the range of original image. labels_int32(Variable): A 2-D LoDTensor in shape of [R, 1] with type of int32. R is the same as it in `rois`. Each element repersents a class label of a RoI. num_classes(int): Class number. resolution(int): Resolution of mask predictions. Returns: mask_rois (Variable): A 2D LoDTensor with shape [P, 4]. P is the total number of sampled RoIs. Each element is a bounding box with [xmin, ymin, xmax, ymax] format in range of orignal image size. mask_rois_has_mask_int32 (Variable): A 2D LoDTensor with shape [P, 1], each element repersents the output mask RoI index with regard to to input RoIs. mask_int32 (Variable): A 2D LoDTensor with shape [P, K * M * M], K is the classes number and M is the resolution of mask predictions. Each element repersents the binary mask targets. Examples: .. code-block:: python im_info = fluid.layers.data(name="im_info", shape=[3], dtype="float32") gt_classes = fluid.layers.data(name="gt_classes", shape=[1], dtype="float32", lod_level=1) is_crowd = fluid.layers.data(name="is_crowd", shape=[1], dtype="float32", lod_level=1) gt_masks = fluid.layers.data(name="gt_masks", shape=[2], dtype="float32", lod_level=3) # rois, labels_int32 can be the output of # fluid.layers.generate_proposal_labels. mask_rois, mask_index, mask_int32 = fluid.layers.generate_mask_labels( im_info=im_info, gt_classes=gt_classes, is_crowd=is_crowd, gt_segms=gt_masks, rois=rois, labels_int32=labels_int32, num_classes=81, resolution=14) """ helper = LayerHelper('generate_mask_labels', **locals()) mask_rois = helper.create_variable_for_type_inference(dtype=rois.dtype) roi_has_mask_int32 = helper.create_variable_for_type_inference( dtype=gt_classes.dtype) mask_int32 = helper.create_variable_for_type_inference( dtype=gt_classes.dtype) helper.append_op( type="generate_mask_labels", inputs={ 'ImInfo': im_info, 'GtClasses': gt_classes, 'IsCrowd': is_crowd, 'GtSegms': gt_segms, 'Rois': rois, 'LabelsInt32': labels_int32 }, outputs={ 'MaskRois': mask_rois, 'RoiHasMaskInt32': roi_has_mask_int32, 'MaskInt32': mask_int32 }, attrs={'num_classes': num_classes, 'resolution': resolution}) mask_rois.stop_gradient = True roi_has_mask_int32.stop_gradient = True mask_int32.stop_gradient = True return mask_rois, roi_has_mask_int32, mask_int32 def generate_proposals(scores, bbox_deltas, im_info, anchors, variances, pre_nms_top_n=6000, post_nms_top_n=1000, nms_thresh=0.5, min_size=0.1, eta=1.0, name=None): """ **Generate proposal Faster-RCNN** This operation proposes RoIs according to each box with their probability to be a foreground object and the box can be calculated by anchors. Bbox_deltais and scores to be an object are the output of RPN. Final proposals could be used to train detection net. For generating proposals, this operation performs following steps: 1. Transposes and resizes scores and bbox_deltas in size of (H*W*A, 1) and (H*W*A, 4) 2. Calculate box locations as proposals candidates. 3. Clip boxes to image 4. Remove predicted boxes with small area. 5. Apply NMS to get final proposals as output. Args: scores(Variable): A 4-D Tensor with shape [N, A, H, W] represents the probability for each box to be an object. N is batch size, A is number of anchors, H and W are height and width of the feature map. bbox_deltas(Variable): A 4-D Tensor with shape [N, 4*A, H, W] represents the differece between predicted box locatoin and anchor location. im_info(Variable): A 2-D Tensor with shape [N, 3] represents origin image information for N batch. Info contains height, width and scale between origin image size and the size of feature map. anchors(Variable): A 4-D Tensor represents the anchors with a layout of [H, W, A, 4]. H and W are height and width of the feature map, num_anchors is the box count of each position. Each anchor is in (xmin, ymin, xmax, ymax) format an unnormalized. variances(Variable): The expanded variances of anchors with a layout of [H, W, num_priors, 4]. Each variance is in (xcenter, ycenter, w, h) format. pre_nms_top_n(float): Number of total bboxes to be kept per image before NMS. 6000 by default. post_nms_top_n(float): Number of total bboxes to be kept per image after NMS. 1000 by default. nms_thresh(float): Threshold in NMS, 0.5 by default. min_size(float): Remove predicted boxes with either height or width < min_size. 0.1 by default. eta(float): Apply in adaptive NMS, if adaptive threshold > 0.5, adaptive_threshold = adaptive_threshold * eta in each iteration. """ helper = LayerHelper('generate_proposals', **locals()) rpn_rois = helper.create_variable_for_type_inference( dtype=bbox_deltas.dtype) rpn_roi_probs = helper.create_variable_for_type_inference( dtype=scores.dtype) helper.append_op( type="generate_proposals", inputs={ 'Scores': scores, 'BboxDeltas': bbox_deltas, 'ImInfo': im_info, 'Anchors': anchors, 'Variances': variances }, attrs={ 'pre_nms_topN': pre_nms_top_n, 'post_nms_topN': post_nms_top_n, 'nms_thresh': nms_thresh, 'min_size': min_size, 'eta': eta }, outputs={'RpnRois': rpn_rois, 'RpnRoiProbs': rpn_roi_probs}) rpn_rois.stop_gradient = True rpn_roi_probs.stop_gradient = True return rpn_rois, rpn_roi_probs def multiclass_nms(bboxes, scores, score_threshold, nms_top_k, keep_top_k, nms_threshold=0.3, normalized=True, nms_eta=1., background_label=0, name=None): """ **Multiclass NMS** This operator is to do multi-class non maximum suppression (NMS) on boxes and scores. In the NMS step, this operator greedily selects a subset of detection bounding boxes that have high scores larger than score_threshold, if providing this threshold, then selects the largest nms_top_k confidences scores if nms_top_k is larger than -1. Then this operator pruns away boxes that have high IOU (intersection over union) overlap with already selected boxes by adaptive threshold NMS based on parameters of nms_threshold and nms_eta. Aftern NMS step, at most keep_top_k number of total bboxes are to be kept per image if keep_top_k is larger than -1. Args: bboxes (Variable): Two types of bboxes are supported: 1. (Tensor) A 3-D Tensor with shape [N, M, 4 or 8 16 24 32] represents the predicted locations of M bounding bboxes, N is the batch size. Each bounding box has four coordinate values and the layout is [xmin, ymin, xmax, ymax], when box size equals to 4. 2. (LoDTensor) A 3-D Tensor with shape [M, C, 4] M is the number of bounding boxes, C is the class number scores (Variable): Two types of scores are supported: 1. (Tensor) A 3-D Tensor with shape [N, C, M] represents the predicted confidence predictions. N is the batch size, C is the class number, M is number of bounding boxes. For each category there are total M scores which corresponding M bounding boxes. Please note, M is equal to the 2nd dimension of BBoxes. 2. (LoDTensor) A 2-D LoDTensor with shape [M, C]. M is the number of bbox, C is the class number. In this case, input BBoxes should be the second case with shape [M, C, 4]. background_label (int): The index of background label, the background label will be ignored. If set to -1, then all categories will be considered. Default: 0 score_threshold (float): Threshold to filter out bounding boxes with low confidence score. If not provided, consider all boxes. nms_top_k (int): Maximum number of detections to be kept according to the confidences aftern the filtering detections based on score_threshold. nms_threshold (float): The threshold to be used in NMS. Default: 0.3 nms_eta (float): The threshold to be used in NMS. Default: 1.0 keep_top_k (int): Number of total bboxes to be kept per image after NMS step. -1 means keeping all bboxes after NMS step. normalized (bool): Whether detections are normalized. Default: True name(str): Name of the multiclass nms op. Default: None. Returns: Out: A 2-D LoDTensor with shape [No, 6] represents the detections. Each row has 6 values: [label, confidence, xmin, ymin, xmax, ymax] or A 2-D LoDTensor with shape [No, 10] represents the detections. Each row has 10 values: [label, confidence, x1, y1, x2, y2, x3, y3, x4, y4]. No is the total number of detections. If there is no detected boxes for all images, lod will be set to {1} and Out only contains one value which is -1. (After version 1.3, when no boxes detected, the lod is changed from {0} to {1}) Examples: .. code-block:: python boxes = fluid.layers.data(name='bboxes', shape=[81, 4], dtype='float32', lod_level=1) scores = fluid.layers.data(name='scores', shape=[81], dtype='float32', lod_level=1) out = fluid.layers.multiclass_nms(bboxes=boxes, scores=scores, background_label=0, score_threshold=0.5, nms_top_k=400, nms_threshold=0.3, keep_top_k=200, normalized=False) """ helper = LayerHelper('multiclass_nms', **locals()) output = helper.create_variable_for_type_inference(dtype=bboxes.dtype) helper.append_op( type="multiclass_nms", inputs={'BBoxes': bboxes, 'Scores': scores}, attrs={ 'background_label': background_label, 'score_threshold': score_threshold, 'nms_top_k': nms_top_k, 'nms_threshold': nms_threshold, 'nms_eta': nms_eta, 'keep_top_k': keep_top_k, 'nms_eta': nms_eta, 'normalized': normalized }, outputs={'Out': output}) output.stop_gradient = True return output