/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #pragma once #include "paddle/framework/op_registry.h" #include "paddle/operators/math/math_function.h" #include "paddle/operators/math/unpooling.h" namespace paddle { namespace operators { using Tensor = framework::Tensor; template class UnpoolKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& context) const override { const Tensor* in_x = context.Input("X"); const Tensor* in_y = context.Input("Y"); Tensor* out = context.Output("Out"); std::string pooling_type = context.Attr("unpooling_type"); std::vector ksize = context.Attr>("ksize"); std::vector strides = context.Attr>("strides"); std::vector paddings = context.Attr>("paddings"); switch (ksize.size()) { case 2: { if (pooling_type == "max") { math::Unpool2d_MaxFunctor unpool2d_max_forward; unpool2d_max_forward(context.device_context(), *in_x, *in_y, out); } } break; default: { PADDLE_THROW("Pool op only supports 2D input."); } } } }; template class UnpoolGradKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& context) const override { const Tensor* in_x = context.Input("X"); const Tensor* in_y = context.Input("Y"); const Tensor* out = context.Input("Out"); const Tensor* out_grad = context.Input(framework::GradVarName("Out")); Tensor* in_x_grad = context.Output(framework::GradVarName("X")); std::string pooling_type = context.Attr("unpooling_type"); std::vector ksize = context.Attr>("ksize"); std::vector strides = context.Attr>("strides"); std::vector paddings = context.Attr>("paddings"); auto& device_ctx = context.device_context(); math::SetConstant zero; if (in_x_grad) { in_x_grad->mutable_data(context.GetPlace()); zero(device_ctx, in_x_grad, static_cast(0.0)); } switch (ksize.size()) { case 2: { if (pooling_type == "max") { math::Unpool2d_MaxGradFunctor unpool2d_max_backward; unpool2d_max_backward(context.device_context(), *in_x, *in_y, in_x_grad, *out, *out_grad); } } break; default: { PADDLE_THROW("Unpool op only supports 2D input."); } } } }; } // namespace operators } // namespace paddle