# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function import unittest import numpy as np import math import sys import paddle.compat as cpt from op_test import OpTest class TestROIPoolOp(OpTest): def set_data(self): self.init_test_case() self.make_rois() self.calc_roi_pool() self.inputs = {'X': self.x, 'ROIs': (self.rois[:, 1:5], self.rois_lod)} self.attrs = { 'spatial_scale': self.spatial_scale, 'pooled_height': self.pooled_height, 'pooled_width': self.pooled_width } self.outputs = {'Out': self.outs, 'Argmax': self.argmaxes} def init_test_case(self): self.batch_size = 3 self.channels = 3 self.height = 6 self.width = 4 # n, c, h, w self.x_dim = (self.batch_size, self.channels, self.height, self.width) self.spatial_scale = 1.0 / 4.0 self.pooled_height = 2 self.pooled_width = 2 self.x = np.random.random(self.x_dim).astype('float32') def calc_roi_pool(self): out_data = np.zeros((self.rois_num, self.channels, self.pooled_height, self.pooled_width)) argmax_data = np.zeros((self.rois_num, self.channels, self.pooled_height, self.pooled_width)) for i in range(self.rois_num): roi = self.rois[i] roi_batch_id = int(roi[0]) roi_start_w = int(cpt.round(roi[1] * self.spatial_scale)) roi_start_h = int(cpt.round(roi[2] * self.spatial_scale)) roi_end_w = int(cpt.round(roi[3] * self.spatial_scale)) roi_end_h = int(cpt.round(roi[4] * self.spatial_scale)) roi_height = int(max(roi_end_h - roi_start_h + 1, 1)) roi_width = int(max(roi_end_w - roi_start_w + 1, 1)) x_i = self.x[roi_batch_id] bin_size_h = float(roi_height) / float(self.pooled_height) bin_size_w = float(roi_width) / float(self.pooled_width) for c in range(self.channels): for ph in range(self.pooled_height): for pw in range(self.pooled_width): hstart = int(math.floor(ph * bin_size_h)) wstart = int(math.floor(pw * bin_size_w)) hend = int(math.ceil((ph + 1) * bin_size_h)) wend = int(math.ceil((pw + 1) * bin_size_w)) hstart = min(max(hstart + roi_start_h, 0), self.height) hend = min(max(hend + roi_start_h, 0), self.height) wstart = min(max(wstart + roi_start_w, 0), self.width) wend = min(max(wend + roi_start_w, 0), self.width) is_empty = (hend <= hstart) or (wend <= wstart) if is_empty: out_data[i, c, ph, pw] = 0 else: out_data[i, c, ph, pw] = -sys.float_info.max argmax_data[i, c, ph, pw] = -1 for h in range(hstart, hend): for w in range(wstart, wend): if x_i[c, h, w] > out_data[i, c, ph, pw]: out_data[i, c, ph, pw] = x_i[c, h, w] argmax_data[i, c, ph, pw] = h * self.width + w self.outs = out_data.astype('float32') self.argmaxes = argmax_data.astype('int64') def make_rois(self): rois = [] self.rois_lod = [[]] for bno in range(self.batch_size): self.rois_lod[0].append(bno + 1) for i in range(bno + 1): x1 = np.random.random_integers( 0, self.width // self.spatial_scale - self.pooled_width) y1 = np.random.random_integers( 0, self.height // self.spatial_scale - self.pooled_height) x2 = np.random.random_integers(x1 + self.pooled_width, self.width // self.spatial_scale) y2 = np.random.random_integers( y1 + self.pooled_height, self.height // self.spatial_scale) roi = [bno, x1, y1, x2, y2] rois.append(roi) self.rois_num = len(rois) self.rois = np.array(rois).astype("float32") def setUp(self): self.op_type = "roi_pool" self.set_data() def test_check_output(self): self.check_output() def test_check_grad(self): self.check_grad(['X'], 'Out') if __name__ == '__main__': unittest.main()