# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import paddle import paddle.nn as nn import paddle.nn.functional as F from ppdet.core.workspace import register from paddle.regularizer import L2Decay from paddle import ParamAttr from ..layers import AnchorGeneratorSSD @register class FaceHead(nn.Layer): """ Head block for Face detection network Args: num_classes (int): Number of output classes. in_channels (int): Number of input channels. anchor_generator(object): instance of anchor genertor method. kernel_size (int): kernel size of Conv2D in FaceHead. padding (int): padding of Conv2D in FaceHead. conv_decay (float): norm_decay (float): weight decay for conv layer weights. loss (object): loss of face detection model. """ __shared__ = ['num_classes'] __inject__ = ['anchor_generator', 'loss'] def __init__(self, num_classes=80, in_channels=[96, 96], anchor_generator=AnchorGeneratorSSD().__dict__, kernel_size=3, padding=1, conv_decay=0., loss='SSDLoss'): super(FaceHead, self).__init__() # add background class self.num_classes = num_classes + 1 self.in_channels = in_channels self.anchor_generator = anchor_generator self.loss = loss if isinstance(anchor_generator, dict): self.anchor_generator = AnchorGeneratorSSD(**anchor_generator) self.num_priors = self.anchor_generator.num_priors self.box_convs = [] self.score_convs = [] for i, num_prior in enumerate(self.num_priors): box_conv_name = "boxes{}".format(i) box_conv = self.add_sublayer( box_conv_name, nn.Conv2D( in_channels=self.in_channels[i], out_channels=num_prior * 4, kernel_size=kernel_size, padding=padding)) self.box_convs.append(box_conv) score_conv_name = "scores{}".format(i) score_conv = self.add_sublayer( score_conv_name, nn.Conv2D( in_channels=self.in_channels[i], out_channels=num_prior * self.num_classes, kernel_size=kernel_size, padding=padding)) self.score_convs.append(score_conv) @classmethod def from_config(cls, cfg, input_shape): return {'in_channels': [i.channels for i in input_shape], } def forward(self, feats, image, gt_bbox=None, gt_class=None): box_preds = [] cls_scores = [] prior_boxes = [] for feat, box_conv, score_conv in zip(feats, self.box_convs, self.score_convs): box_pred = box_conv(feat) box_pred = paddle.transpose(box_pred, [0, 2, 3, 1]) box_pred = paddle.reshape(box_pred, [0, -1, 4]) box_preds.append(box_pred) cls_score = score_conv(feat) cls_score = paddle.transpose(cls_score, [0, 2, 3, 1]) cls_score = paddle.reshape(cls_score, [0, -1, self.num_classes]) cls_scores.append(cls_score) prior_boxes = self.anchor_generator(feats, image) if self.training: return self.get_loss(box_preds, cls_scores, gt_bbox, gt_class, prior_boxes) else: return (box_preds, cls_scores), prior_boxes def get_loss(self, boxes, scores, gt_bbox, gt_class, prior_boxes): return self.loss(boxes, scores, gt_bbox, gt_class, prior_boxes)