/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenseshashernless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #include #include "paddle/framework/lod_tensor.h" #include "paddle/framework/op_registry.h" #include "paddle/operators/nccl/nccl_gpu_common.h" namespace paddle { namespace operators { using framework::Tensor; using platform::Communicator; using framework::LoDTensor; template class NCCLTypeWrapper; template <> class NCCLTypeWrapper { public: static const ncclDataType_t type = ncclFloat; }; template <> class NCCLTypeWrapper { public: static const ncclDataType_t type = ncclDouble; }; template class NCCLAllReduceKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& ctx) const override { PADDLE_ENFORCE(platform::is_gpu_place(ctx.GetPlace()), "This kernel only runs on GPU device."); auto ins = ctx.MultiInput("X"); auto outs = ctx.MultiOutput("Out"); std::string reduction = ctx.Attr("reduction"); ncclRedOp_t reduction_op_ = ncclSum; if (reduction == "ncclMin") { reduction_op_ = ncclMin; } else if (reduction == "ncclMax") { reduction_op_ = ncclMax; } else if (reduction == "ncclSum") { reduction_op_ = ncclSum; } else if (reduction == "ncclProd") { reduction_op_ = ncclProd; } else { PADDLE_THROW("Invalid reduction. default ncclSum."); } auto* comm = ctx.Input("Communicator"); auto stream = ctx.cuda_device_context().stream(); // device id int gpu_id = boost::get(ctx.GetPlace()).GetDeviceId(); int idx = comm->GetCommId(gpu_id); for (size_t i = 0; i < ins.size(); ++i) { VLOG(1) << "gpu : " << " invoke allreduce. send " << ins[i]->numel() << " recv " << outs[i]->numel(); PADDLE_ENFORCE(platform::dynload::ncclAllReduce( ins[i]->data(), outs[i]->mutable_data(ctx.GetPlace()), outs[i]->numel(), NCCLTypeWrapper::type, reduction_op_, comm->comms_[idx], stream)); PADDLE_ENFORCE(cudaStreamSynchronize(stream)); VLOG(1) << "gpu : " << " finished allreduce. send " << ins[i]->numel() << " recv " << outs[i]->numel(); } } }; template class NCCLReduceKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& ctx) const override { PADDLE_ENFORCE(platform::is_gpu_place(ctx.GetPlace()), "This kernel only runs on GPU device."); auto ins = ctx.MultiInput("X"); // x0, x1, x2 auto outs = ctx.MultiOutput("Out"); std::string reduction = ctx.Attr("reduction"); ncclRedOp_t reduction_op_ = ncclSum; if (reduction == "ncclMin") { reduction_op_ = ncclMin; } else if (reduction == "ncclMax") { reduction_op_ = ncclMax; } else if (reduction == "ncclSum") { reduction_op_ = ncclSum; } else if (reduction == "ncclProd") { reduction_op_ = ncclProd; } else { PADDLE_THROW("Invalid reduction. default ncclSum."); } int root = ctx.Attr("root"); auto* comm = ctx.Input("Communicator"); auto stream = reinterpret_cast( ctx.device_context()) .stream(); // device id int gpu_id = boost::get(ctx.GetPlace()).GetDeviceId(); int idx = comm->GetCommId(gpu_id); auto ins_names = ctx.Inputs("X"); std::hash hasher; for (size_t i = 0; i < ins.size(); ++i) { if (root == platform::kInvalidGPUId) { root = hasher(ins_names[i]) % comm->comms_.size(); } T* recvbuffer = nullptr; if (root == gpu_id) { recvbuffer = outs[i]->mutable_data(ctx.GetPlace()); } VLOG(1) << "gpu : " << gpu_id << " invoke reduce. send " << ins[i]->numel() << " recv " << outs[i]->numel(); PADDLE_ENFORCE(platform::dynload::ncclReduce( ins[i]->data(), recvbuffer, ins[i]->numel(), NCCLTypeWrapper::type, reduction_op_, root, comm->comms_[idx], stream)); PADDLE_ENFORCE(cudaStreamSynchronize(stream)); VLOG(1) << "gpu : " << gpu_id << " finished reduce. send " << ins[i]->numel() << " recv " << outs[i]->numel(); } } }; template class NCCLBcastKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& ctx) const override { PADDLE_ENFORCE(platform::is_gpu_place(ctx.GetPlace()), "This kernel only runs on GPU device."); int root = ctx.Attr("root"); auto* comm = ctx.Input("Communicator"); auto stream = reinterpret_cast( ctx.device_context()) .stream(); // device id int gpu_id = boost::get(ctx.GetPlace()).GetDeviceId(); int idx = comm->GetCommId(gpu_id); if (idx == root) { auto ins = ctx.MultiInput("X"); for (size_t i = 0; i < ins.size(); ++i) { VLOG(1) << "gpu : " << gpu_id << " invoke Bcast. send " << ins[i]->numel(); VLOG(1) << " before ncclBcast"; PADDLE_ENFORCE(platform::dynload::ncclBcast( (void*)ins[i]->data(), ins[i]->numel(), NCCLTypeWrapper::type, root, comm->comms_[idx], stream)); VLOG(1) << " after ncclBcast"; PADDLE_ENFORCE(cudaStreamSynchronize(stream)); VLOG(1) << "gpu : " << gpu_id << " finished Bcast."; } } else { auto outs = ctx.MultiOutput("Out"); for (size_t i = 0; i < outs.size(); ++i) { VLOG(1) << "gpu : " << gpu_id << " invoke Bcast. recv buffer " << framework::product(outs[i]->dims()); PADDLE_ENFORCE(platform::dynload::ncclBcast( outs[i]->mutable_data(ctx.GetPlace()), outs[i]->numel(), NCCLTypeWrapper::type, root, comm->comms_[idx], stream)); PADDLE_ENFORCE(cudaStreamSynchronize(stream)); VLOG(1) << "gpu : " << gpu_id << " finished Bcast. recv " << outs[i]->numel(); } } } }; } // namespace operators } // namespace paddle namespace ops = paddle::operators; REGISTER_OP_CUDA_KERNEL(ncclAllReduce, ops::NCCLAllReduceKernel); REGISTER_OP_CUDA_KERNEL(ncclBcast, ops::NCCLBcastKernel); REGISTER_OP_CUDA_KERNEL(ncclReduce, ops::NCCLReduceKernel);