// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "paddle/fluid/lite/api/cxx_api.h" #include // NOLINT #include "paddle/fluid/lite/core/mir/use_passes.h" #include "paddle/fluid/lite/core/op_registry.h" namespace paddle { namespace lite { using Time = decltype(std::chrono::high_resolution_clock::now()); Time time() { return std::chrono::high_resolution_clock::now(); } double time_diff(Time t1, Time t2) { typedef std::chrono::microseconds ms; auto diff = t2 - t1; ms counter = std::chrono::duration_cast(diff); return counter.count() / 1000.0; } void Run(const char* model_dir, int repeat) { #ifdef LITE_WITH_ARM DeviceInfo::Init(); #endif lite::ExecutorLite predictor; std::vector valid_places({Place{TARGET(kHost), PRECISION(kFloat)}, Place{TARGET(kARM), PRECISION(kFloat)}}); predictor.Build(model_dir, Place{TARGET(kARM), PRECISION(kFloat)}, valid_places); auto* input_tensor = predictor.GetInput(0); input_tensor->Resize(DDim(std::vector({1, 3, 224, 224}))); auto* data = input_tensor->mutable_data(); for (int i = 0; i < input_tensor->dims().production(); i++) { data[i] = 1; } for (int i = 0; i < 10; i++) predictor.Run(); auto time1 = time(); for (int i = 0; i < repeat; i++) predictor.Run(); auto time2 = time(); std::cout << " predict cost: " << time_diff(time1, time2) / repeat << "ms" << std::endl; auto* out = predictor.GetOutput(0); LOG(INFO) << out << " memory size " << out->data_size(); LOG(INFO) << "out " << out->data()[0]; LOG(INFO) << "out " << out->data()[1]; LOG(INFO) << "dims " << out->dims(); LOG(INFO) << "out data size: " << out->data_size(); } } // namespace lite } // namespace paddle int main(int argc, char** argv) { CHECK_EQ(argc, 3) << "usage: ./cmd "; paddle::lite::Run(argv[1], std::stoi(argv[2])); return 0; } USE_LITE_OP(mul); USE_LITE_OP(fc); USE_LITE_OP(scale); USE_LITE_OP(feed); USE_LITE_OP(fetch); USE_LITE_OP(io_copy); USE_LITE_OP(conv2d); USE_LITE_OP(batch_norm); USE_LITE_OP(relu); USE_LITE_OP(depthwise_conv2d); USE_LITE_OP(pool2d); USE_LITE_OP(elementwise_add); USE_LITE_OP(softmax); USE_LITE_KERNEL(feed, kHost, kAny, kAny, def); USE_LITE_KERNEL(fetch, kHost, kAny, kAny, def); #ifdef LITE_WITH_ARM USE_LITE_KERNEL(fc, kARM, kFloat, kNCHW, def); USE_LITE_KERNEL(mul, kARM, kFloat, kNCHW, def); USE_LITE_KERNEL(scale, kARM, kFloat, kNCHW, def); USE_LITE_KERNEL(conv2d, kARM, kFloat, kNCHW, def); USE_LITE_KERNEL(batch_norm, kARM, kFloat, kNCHW, def); USE_LITE_KERNEL(relu, kARM, kFloat, kNCHW, def); USE_LITE_KERNEL(depthwise_conv2d, kARM, kFloat, kNCHW, def); USE_LITE_KERNEL(pool2d, kARM, kFloat, kNCHW, def); USE_LITE_KERNEL(elementwise_add, kARM, kFloat, kNCHW, def); USE_LITE_KERNEL(softmax, kARM, kFloat, kNCHW, def); // USE_LITE_KERNEL(feed, kARM, kAny, kAny, def); // USE_LITE_KERNEL(fetch, kARM, kAny, kAny, def); #endif // LITE_WITH_ARM #ifdef LITE_WITH_CUDA USE_LITE_KERNEL(mul, kCUDA, kFloat, kNCHW, def); USE_LITE_KERNEL(io_copy, kCUDA, kAny, kAny, host_to_device); USE_LITE_KERNEL(io_copy, kCUDA, kAny, kAny, device_to_host); #endif