# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function import framework from framework import Program, default_main_program, Parameter, Variable import optimizer from layer_helper import LayerHelper from distributed_spliter import * import math from . import core class VarBlock: def __init__(self, varname, offset, size): self.varname = varname # NOTE: real offset is offset * size self.offset = offset self.size = size def __str__(self): return "%s:%d:%d" % (self.varname, self.offset, self.size) def same_or_split_var(p_name, var_name): return p_name == var_name or p_name.startswith(var_name + ".block") def split_dense_variable(var_list, pserver_count, min_block_size=1024, max_block_size=1048576): """ We may need to split dense tensor to one or more blocks and put them equally onto parameter server. One block is a sub-tensor aligned by dim[0] of the tensor. We need to have a minimal block size so that the calculations in the parameter server side can gain better performance. By default minimum block size is 1024. The max block size is used to prevent very large blocks that may cause send error. """ blocks = [] for var in var_list: split_count = pserver_count var_numel = reduce(lambda x, y: x * y, var.shape) max_pserver_count = int(math.floor(var_numel / float(min_block_size))) if max_pserver_count == 0: max_pserver_count = 1 if max_pserver_count < pserver_count: split_count = max_pserver_count block_size = int(math.ceil(var_numel / float(split_count))) if len(var.shape) >= 2: # align by dim1(width) dim1 = reduce(lambda x, y: x * y, var.shape[1:]) remains = block_size % dim1 if remains != 0: block_size += dim1 - remains # update split_count after aligning split_count = int(math.ceil(var_numel / float(block_size))) for block_id in xrange(split_count): curr_block_size = min(block_size, var_numel - ( (block_id) * block_size)) block = VarBlock(var.name, block_id, curr_block_size) blocks.append(str(block)) return blocks class DistributeTranspiler: def transpile(self, optimize_ops, params_grads, program=None, pservers="127.0.0.1:6174", trainers=1, split_method=round_robin): """ Transpile the program to distributed data-parallelism programs. The main_program will be transformed to use a remote parameter server to do parameter optimization. And the optimization graph will be put into a parameter server program. Use different methods to split trainable variables to different parameter servers. :param optimize_ops: op list of optimization, should be the return value of Optimizer.minimize :type optimize_ops: list :param program: program to optimize, default is default_main_program :param pservers: parameter server endpoints like "m1:6174,m2:6174" :type pservers: string :return: return a list of programs """ assert (callable(split_method)) if program is None: program = default_main_program() self.program = program self.trainers = trainers self.optimize_ops = optimize_ops # steps to transpile: # 1. split variable to multiple blocks, aligned by product(dim[1:]) (width). # 2. modify trainer program add split_op to each Grad. # 3. append send_op to trainer. # 4. append concat_op to trainer to update local weights. # 5. create new program for parameter server. # 6. create parameter server program by split_method generated endpoint->VarBlock pserver_endpoints = pservers.split(",") # step1 param_list = [pg[0] for pg in params_grads] grad_list = [pg[1] for pg in params_grads] # TODO: add split selected rows support grad_blocks = split_dense_variable(grad_list, len(pserver_endpoints)) param_blocks = split_dense_variable(param_list, len(pserver_endpoints)) # step2 grad_var_mapping = self._append_split_op(program, grad_blocks) # step3 send_inputs = [] send_outputs = [] for b in grad_blocks: # append by order varname, block_id, _ = b.split(":") send_inputs.append(grad_var_mapping[varname][int(block_id)]) param_var_mapping = self._create_vars_from_blocklist(program, param_blocks) for b in param_blocks: varname, block_id, _ = b.split(":") send_outputs.append(param_var_mapping[varname][int(block_id)]) # let send_op know which endpoint to send which var to, eplist has the same # order as send_inputs. eplist = split_method(send_inputs, pserver_endpoints) # create mapping of endpoint -> split var to create pserver side program self.param_grad_ep_mapping = dict() for i, ep in enumerate(eplist): param = send_outputs[i] grad = send_inputs[i] if not self.param_grad_ep_mapping.has_key(ep): self.param_grad_ep_mapping[ep] = {"params": [], "grads": []} self.param_grad_ep_mapping[ep]["params"].append(param) self.param_grad_ep_mapping[ep]["grads"].append(grad) rpc_client_var = program.global_block().create_var( name="RPC_CLIENT_VAR", psersistable=True, dtype='float32', # dtype and shape is not used in fact shape=[0]) # create send_op send_op = program.global_block().append_op( type="send", inputs={"X": send_inputs}, outputs={"Out": send_outputs, "RPCClient": rpc_client_var}, attrs={"endpoints": pserver_endpoints, "epmap": eplist}) # step4 for varname, splited_var in param_var_mapping.iteritems(): if len(splited_var) <= 1: continue orig_param = program.global_block().vars[varname] concat = program.global_block().append_op( type="concat", inputs={"X": splited_var}, outputs={"Out": [orig_param]}, attrs={"axis": 0}) def _create_vars_from_blocklist(self, program, block_list): # Create respective variables using the block_list block_map = dict() var_mapping = dict() for block_str in block_list: varname, offset, size = block_str.split(":") if not block_map.has_key(varname): block_map[varname] = [] block_map[varname].append((long(offset), long(size))) for varname, splited in block_map.iteritems(): orig_var = program.global_block().vars[varname] var_mapping[varname] = [] if len(splited) == 1: var_mapping[varname] = [orig_var] continue orig_shape = orig_var.shape orig_dim1_flatten = 1 if len(orig_shape) >= 2: orig_dim1_flatten = reduce(lambda x, y: x * y, orig_shape[1:]) for i, block in enumerate(splited): size = block[1] rows = size / orig_dim1_flatten splited_shape = [rows] if len(orig_shape) >= 2: splited_shape.extend(orig_shape[1:]) var = program.global_block().create_var( name="%s.block%d" % (varname, i), psersistable=False, dtype=orig_var.dtype, shape=splited_shape) # flattend splited var var_mapping[varname].append(var) return var_mapping def _clone_var(self, block, var): assert isinstance(var, Variable) return block.create_var( name=var.name, shape=var.shape, dtype=var.dtype, type=var.type, lod_level=var.lod_level, # HACK: let all param in pserver be persistable so the child # program in recv can get them persistable=True) def _append_split_op(self, program, gradblocks): # Split variables that need to be split and append respective ops var_mapping = self._create_vars_from_blocklist(program, gradblocks) for varname, splited_vars in var_mapping.iteritems(): # variable that don't need to split have empty splited_vars if len(splited_vars) <= 1: continue orig_var = program.global_block().vars[varname] if orig_var.type == core.VarDesc.VarType.SELECTED_ROWS: height_sections = [] for v in splited_vars: height_sections.append(v.shape[0]) program.global_block().append_op( type="split_selected_rows", inputs={"X": orig_var}, outputs={"Out": splited_vars}, attrs={"height_sections": height_sections}) elif orig_var.type == core.VarDesc.VarType.LOD_TENSOR: sections = [] for v in splited_vars: sections.append(v.shape[0]) program.global_block().append_op( type="split", inputs={"X": orig_var}, outputs={"Out": splited_vars}, attrs={"sections": sections} # assume split evenly ) else: AssertionError("Variable type should be in set " "[LOD_TENSOR, SELECTED_ROWS]") return var_mapping def get_trainer_program(self): # remove optimize ops and add a send op to main_program self.program.global_block().delete_ops(self.optimize_ops) return self.program def _create_var_for_trainers(self, block, var, trainers): # For each trainer, create the necessary variables var_list = [] for i in xrange(trainers): var_each = block.create_var( name="%s.trainer_%d" % (var.name, i), psersistable=var.persistable, dtype=var.dtype, shape=var.shape) var_list.append(var_each) return var_list def _get_optimizer_input_shape(self, op_type, varkey, orig_shape, param_shape): """ Returns the shape for optimizer inputs that need to be reshaped when Param and Grad is split to multiple servers. """ # HACK(typhoonzero): Should use functions of corresponding optimizer in # optimizer.py to get the shape, do not bind this in the transpiler. if op_type == "adam": if varkey in ["Moment1", "Moment2"]: return param_shape elif op_type == "adagrad": if varkey == "Moment": return param_shape elif op_type == "adamax": if varkey in ["Moment", "InfNorm"]: return param_shape elif op_type == "momentum": if varkey == "Velocity": return param_shape elif op_type == "": if varkey == "Moment": return param_shape elif op_type == "sgd": pass return orig_shape def _is_op_on_pserver(self, endpoint, all_ops, idx): """ Recursively check if the op need to run on current server. Assume that ops are in the execution order. """ param_names = [ p.name for p in self.param_grad_ep_mapping[endpoint]["params"] ] op = all_ops[idx] if op.inputs.has_key("Param"): if op.inputs["Param"].name in param_names: return True else: for n in param_names: if same_or_split_var(n, op.inputs[ "Param"].name) and n != op.inputs["Param"].name: return True return False else: j = idx - 1 while j >= 0: prev_op = all_ops[j] prev_output_names = [o.name for o in prev_op.outputs.values()] prev_input_names = [o.name for o in prev_op.inputs.values()] found1 = False found2 = False for _, v in op.inputs.iteritems(): if v.name in prev_output_names: found1 = self._is_op_on_pserver(endpoint, all_ops, j) # later ops may produce output for prev op's next batch use. for _, v in op.outputs.iteritems(): if v.name in prev_input_names: found2 = self._is_op_on_pserver(endpoint, all_ops, j) if found1 or found2: return True j -= 1 return False def _append_pserver_ops(self, program, pserver_program, opt_op, endpoint): new_inputs = dict() # update param/grad shape first, then other inputs like # moment can use the updated shape for key, var in opt_op.inputs.iteritems(): if key == "Grad": grad_block = None for g in self.param_grad_ep_mapping[endpoint]["grads"]: if same_or_split_var(g.name, var.name): grad_block = g break if not grad_block: # do not append this op if current endpoint # is not dealing with this grad block return merged_var = program.global_block().create_var( name=grad_block.name, persistable=grad_block.persistable, dtype=grad_block.dtype, shape=grad_block.shape) # append merging ops if trainers > 1 if self.trainers > 1: vars2merge = self._create_var_for_trainers( program.global_block(), grad_block, self.trainers) program.global_block().append_op( type="sum", inputs={"X": vars2merge}, outputs={"Out": merged_var}) program.global_block().append_op( type="scale", inputs={"X": merged_var}, outputs={"Out": merged_var}, attrs={"scale": 1.0 / float(self.trainers)}) new_inputs[key] = merged_var elif key == "Param": # param is already created on global program param_block = None for p in self.param_grad_ep_mapping[endpoint]["params"]: if same_or_split_var(p.name, var.name): param_block = p break if not param_block: return tmpvar = program.global_block().create_var( name=param_block.name, persistable=True, dtype=param_block.dtype, shape=param_block.shape) new_inputs[key] = tmpvar for key, var in opt_op.inputs.iteritems(): if key in ["Param", "Grad"]: continue # update accumulator variable shape param_shape = new_inputs["Param"].shape new_shape = self._get_optimizer_input_shape(opt_op.type, key, var.shape, param_shape) tmpvar = program.global_block().create_var( name=var.name, persistable=var.persistable, dtype=var.dtype, shape=new_shape) new_inputs[key] = tmpvar # create var in pserver program global block. # TODO(typhoonzero): put blocks in one program to avoid create two # variables. pserver_program.global_block().create_var( name=var.name, persistable=var.persistable, dtype=var.dtype, shape=new_shape) # change output's ParamOut variable opt_op.outputs["ParamOut"] = new_inputs["Param"] program.global_block().append_op( type=opt_op.type, inputs=new_inputs, outputs=opt_op.outputs, attrs=opt_op.attrs) def _append_pserver_non_opt_ops(self, program, pserver_program, opt_op): # Append the ops for parameters that do not need to be optimized/updated for _, var in opt_op.inputs.iteritems(): program.global_block().create_var( name=var.name, persistable=var.persistable, dtype=var.dtype, shape=var.shape) pserver_program.global_block().create_var( name=var.name, persistable=var.persistable, dtype=var.dtype, shape=var.shape) program.global_block().append_op( type=opt_op.type, inputs=opt_op.inputs, outputs=opt_op.outputs, attrs=opt_op.attrs) def get_pserver_program(self, endpoint): """ Get pserver side program using the endpoint NOTE: assume blocks of the same variable is not distributed on the same pserver, only change param/grad varnames for trainers to fetch. For each pserver endpoint, server side program must be a sub-set of the original optimization program. """ # step5 pserver_program = Program() for v in self.param_grad_ep_mapping[endpoint]["params"]: self._clone_var(pserver_program.global_block(), v) for v in self.param_grad_ep_mapping[endpoint]["grads"]: # create vars for each trainer in global scope, so # we don't need to create them when grad arrives. pserver_program.global_block().create_var( name=v.name, persistable=True, dtype=v.dtype, shape=v.shape) for trainer_id in xrange(self.trainers): print("create variable for program: %s.trainer_%d" % (v.name, trainer_id)) pserver_program.global_block().create_var( name="%s.trainer_%d" % (v.name, trainer_id), persistable=True, dtype=v.dtype, shape=v.shape) # step6 optimize_sub_program = Program() # Iterate through the ops and append ops as needed for idx, opt_op in enumerate(self.optimize_ops): is_op_on_pserver = self._is_op_on_pserver(endpoint, self.optimize_ops, idx) if not is_op_on_pserver: continue if opt_op.inputs.has_key("Grad"): self._append_pserver_ops(optimize_sub_program, pserver_program, opt_op, endpoint) else: self._append_pserver_non_opt_ops(optimize_sub_program, pserver_program, opt_op) # Append the recv op pserver_program.global_block().append_op( type="recv", inputs={}, outputs={}, attrs={ "OptimizeBlock": optimize_sub_program.global_block(), "endpoint": endpoint, "ParamList": [ p.name for p in self.param_grad_ep_mapping[endpoint]["params"] ], "GradList": [ p.name for p in self.param_grad_ep_mapping[endpoint]["grads"] ], "Fanin": self.trainers }) pserver_program.sync_with_cpp() return pserver_program def get_startup_program(self, endpoint, pserver_program): """ Get startup program for current parameter server. Modify operator input variables if there are variables that were split to several blocks. """ s_prog = Program() orig_s_prog = framework.default_startup_program() params = self.param_grad_ep_mapping[endpoint]["params"] def _get_splited_name_and_shape(varname): for idx, splited_param in enumerate(params): pname = splited_param.name if same_or_split_var(pname, varname) and varname != pname: return pname, splited_param.shape return "", [] # 1. create vars in pserver program to startup program pserver_vars = pserver_program.global_block().vars created_var_map = dict() for _, var in pserver_vars.iteritems(): tmpvar = s_prog.global_block().create_var( name=var.name, persistable=var.persistable, dtype=var.dtype, shape=var.shape) created_var_map[var.name] = tmpvar # 2. rename op outputs for op in orig_s_prog.global_block().ops: new_outputs = dict() # do not append startup op if var is not on this pserver op_on_pserver = False for key, var in op.outputs.iteritems(): newname, _ = _get_splited_name_and_shape(var.name) if newname: op_on_pserver = True new_outputs[key] = created_var_map[newname] elif var.name in pserver_vars: op_on_pserver = True new_outputs[key] = pserver_vars[var.name] if op_on_pserver: if op.type in [ "gaussian_random", "fill_constant", "uniform_random" ]: op.attrs["shape"] = new_outputs["Out"].shape s_prog.global_block().append_op( type=op.type, inputs=op.inputs, outputs=new_outputs, attrs=op.attrs) return s_prog