# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import paddle import paddle.nn as nn from paddle import ParamAttr from paddle.regularizer import L2Decay from paddle.nn.initializer import KaimingUniform, Constant, Normal from ppdet.core.workspace import register, serializable from ..shape_spec import ShapeSpec __all__ = ['DilatedEncoder'] class Bottleneck(nn.Layer): def __init__(self, in_channels, mid_channels, dilation): super(Bottleneck, self).__init__() self.conv1 = nn.Sequential(* [ nn.Conv2D( in_channels, mid_channels, 1, padding=0, weight_attr=ParamAttr(initializer=Normal( mean=0, std=0.01)), bias_attr=ParamAttr(initializer=Constant(0.0))), nn.BatchNorm2D( mid_channels, weight_attr=ParamAttr(regularizer=L2Decay(0.0)), bias_attr=ParamAttr(regularizer=L2Decay(0.0))), nn.ReLU(), ]) self.conv2 = nn.Sequential(* [ nn.Conv2D( mid_channels, mid_channels, 3, padding=dilation, dilation=dilation, weight_attr=ParamAttr(initializer=Normal( mean=0, std=0.01)), bias_attr=ParamAttr(initializer=Constant(0.0))), nn.BatchNorm2D( mid_channels, weight_attr=ParamAttr(regularizer=L2Decay(0.0)), bias_attr=ParamAttr(regularizer=L2Decay(0.0))), nn.ReLU(), ]) self.conv3 = nn.Sequential(* [ nn.Conv2D( mid_channels, in_channels, 1, padding=0, weight_attr=ParamAttr(initializer=Normal( mean=0, std=0.01)), bias_attr=ParamAttr(initializer=Constant(0.0))), nn.BatchNorm2D( in_channels, weight_attr=ParamAttr(regularizer=L2Decay(0.0)), bias_attr=ParamAttr(regularizer=L2Decay(0.0))), nn.ReLU(), ]) def forward(self, x): identity = x y = self.conv3(self.conv2(self.conv1(x))) return y + identity @register class DilatedEncoder(nn.Layer): """ DilatedEncoder used in YOLOF """ def __init__(self, in_channels=[2048], out_channels=[512], block_mid_channels=128, num_residual_blocks=4, block_dilations=[2, 4, 6, 8]): super(DilatedEncoder, self).__init__() self.in_channels = in_channels self.out_channels = out_channels assert len(self.in_channels) == 1, "YOLOF only has one level feature." assert len(self.out_channels) == 1, "YOLOF only has one level feature." self.block_mid_channels = block_mid_channels self.num_residual_blocks = num_residual_blocks self.block_dilations = block_dilations out_ch = self.out_channels[0] self.lateral_conv = nn.Conv2D( self.in_channels[0], out_ch, 1, weight_attr=ParamAttr(initializer=KaimingUniform( negative_slope=1, nonlinearity='leaky_relu')), bias_attr=ParamAttr(initializer=Constant(value=0.0))) self.lateral_norm = nn.BatchNorm2D( out_ch, weight_attr=ParamAttr(regularizer=L2Decay(0.0)), bias_attr=ParamAttr(regularizer=L2Decay(0.0))) self.fpn_conv = nn.Conv2D( out_ch, out_ch, 3, padding=1, weight_attr=ParamAttr(initializer=KaimingUniform( negative_slope=1, nonlinearity='leaky_relu'))) self.fpn_norm = nn.BatchNorm2D( out_ch, weight_attr=ParamAttr(regularizer=L2Decay(0.0)), bias_attr=ParamAttr(regularizer=L2Decay(0.0))) encoder_blocks = [] for i in range(self.num_residual_blocks): encoder_blocks.append( Bottleneck( out_ch, self.block_mid_channels, dilation=block_dilations[i])) self.dilated_encoder_blocks = nn.Sequential(*encoder_blocks) def forward(self, inputs, for_mot=False): out = self.lateral_norm(self.lateral_conv(inputs[0])) out = self.fpn_norm(self.fpn_conv(out)) out = self.dilated_encoder_blocks(out) return [out] @classmethod def from_config(cls, cfg, input_shape): return {'in_channels': [i.channels for i in input_shape], } @property def out_shape(self): return [ShapeSpec(channels=c) for c in self.out_channels]