# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import math import paddle import numpy as np def bbox2delta(src_boxes, tgt_boxes, weights=[1.0, 1.0, 1.0, 1.0]): """Encode bboxes to deltas. """ src_w = src_boxes[:, 2] - src_boxes[:, 0] src_h = src_boxes[:, 3] - src_boxes[:, 1] src_ctr_x = src_boxes[:, 0] + 0.5 * src_w src_ctr_y = src_boxes[:, 1] + 0.5 * src_h tgt_w = tgt_boxes[:, 2] - tgt_boxes[:, 0] tgt_h = tgt_boxes[:, 3] - tgt_boxes[:, 1] tgt_ctr_x = tgt_boxes[:, 0] + 0.5 * tgt_w tgt_ctr_y = tgt_boxes[:, 1] + 0.5 * tgt_h wx, wy, ww, wh = weights dx = wx * (tgt_ctr_x - src_ctr_x) / src_w dy = wy * (tgt_ctr_y - src_ctr_y) / src_h dw = ww * paddle.log(tgt_w / src_w) dh = wh * paddle.log(tgt_h / src_h) deltas = paddle.stack((dx, dy, dw, dh), axis=1) return deltas def delta2bbox(deltas, boxes, weights=[1.0, 1.0, 1.0, 1.0], max_shape=None): """Decode deltas to boxes. Used in RCNNBox,CascadeHead,RCNNHead,RetinaHead. Note: return tensor shape [n,1,4] If you want to add a reshape, please add after the calling code instead of here. """ clip_scale = math.log(1000.0 / 16) widths = boxes[:, 2] - boxes[:, 0] heights = boxes[:, 3] - boxes[:, 1] ctr_x = boxes[:, 0] + 0.5 * widths ctr_y = boxes[:, 1] + 0.5 * heights wx, wy, ww, wh = weights dx = deltas[:, 0::4] / wx dy = deltas[:, 1::4] / wy dw = deltas[:, 2::4] / ww dh = deltas[:, 3::4] / wh # Prevent sending too large values into paddle.exp() dw = paddle.clip(dw, max=clip_scale) dh = paddle.clip(dh, max=clip_scale) pred_ctr_x = dx * widths.unsqueeze(1) + ctr_x.unsqueeze(1) pred_ctr_y = dy * heights.unsqueeze(1) + ctr_y.unsqueeze(1) pred_w = paddle.exp(dw) * widths.unsqueeze(1) pred_h = paddle.exp(dh) * heights.unsqueeze(1) pred_boxes = [] pred_boxes.append(pred_ctr_x - 0.5 * pred_w) pred_boxes.append(pred_ctr_y - 0.5 * pred_h) pred_boxes.append(pred_ctr_x + 0.5 * pred_w) pred_boxes.append(pred_ctr_y + 0.5 * pred_h) pred_boxes = paddle.stack(pred_boxes, axis=-1) if max_shape is not None: pred_boxes[..., 0::2] = pred_boxes[..., 0::2].clip( min=0, max=max_shape[1]) pred_boxes[..., 1::2] = pred_boxes[..., 1::2].clip( min=0, max=max_shape[0]) return pred_boxes def bbox2delta_v2(src_boxes, tgt_boxes, delta_mean=[0.0, 0.0, 0.0, 0.0], delta_std=[1.0, 1.0, 1.0, 1.0]): """Encode bboxes to deltas. Modified from bbox2delta() which just use weight parameters to multiply deltas. """ src_w = src_boxes[:, 2] - src_boxes[:, 0] src_h = src_boxes[:, 3] - src_boxes[:, 1] src_ctr_x = src_boxes[:, 0] + 0.5 * src_w src_ctr_y = src_boxes[:, 1] + 0.5 * src_h tgt_w = tgt_boxes[:, 2] - tgt_boxes[:, 0] tgt_h = tgt_boxes[:, 3] - tgt_boxes[:, 1] tgt_ctr_x = tgt_boxes[:, 0] + 0.5 * tgt_w tgt_ctr_y = tgt_boxes[:, 1] + 0.5 * tgt_h dx = (tgt_ctr_x - src_ctr_x) / src_w dy = (tgt_ctr_y - src_ctr_y) / src_h dw = paddle.log(tgt_w / src_w) dh = paddle.log(tgt_h / src_h) deltas = paddle.stack((dx, dy, dw, dh), axis=1) deltas = ( deltas - paddle.to_tensor(delta_mean)) / paddle.to_tensor(delta_std) return deltas def delta2bbox_v2(deltas, boxes, delta_mean=[0.0, 0.0, 0.0, 0.0], delta_std=[1.0, 1.0, 1.0, 1.0], max_shape=None, ctr_clip=32.0): """Decode deltas to bboxes. Modified from delta2bbox() which just use weight parameters to be divided by deltas. Used in YOLOFHead. Note: return tensor shape [n,1,4] If you want to add a reshape, please add after the calling code instead of here. """ clip_scale = math.log(1000.0 / 16) widths = boxes[:, 2] - boxes[:, 0] heights = boxes[:, 3] - boxes[:, 1] ctr_x = boxes[:, 0] + 0.5 * widths ctr_y = boxes[:, 1] + 0.5 * heights deltas = deltas * paddle.to_tensor(delta_std) + paddle.to_tensor(delta_mean) dx = deltas[:, 0::4] dy = deltas[:, 1::4] dw = deltas[:, 2::4] dh = deltas[:, 3::4] # Prevent sending too large values into paddle.exp() dx = dx * widths.unsqueeze(1) dy = dy * heights.unsqueeze(1) if ctr_clip is not None: dx = paddle.clip(dx, max=ctr_clip, min=-ctr_clip) dy = paddle.clip(dy, max=ctr_clip, min=-ctr_clip) dw = paddle.clip(dw, max=clip_scale) dh = paddle.clip(dh, max=clip_scale) else: dw = dw.clip(min=-ctr_clip, max=ctr_clip) dh = dh.clip(min=-ctr_clip, max=ctr_clip) pred_ctr_x = dx + ctr_x.unsqueeze(1) pred_ctr_y = dy + ctr_y.unsqueeze(1) pred_w = paddle.exp(dw) * widths.unsqueeze(1) pred_h = paddle.exp(dh) * heights.unsqueeze(1) pred_boxes = [] pred_boxes.append(pred_ctr_x - 0.5 * pred_w) pred_boxes.append(pred_ctr_y - 0.5 * pred_h) pred_boxes.append(pred_ctr_x + 0.5 * pred_w) pred_boxes.append(pred_ctr_y + 0.5 * pred_h) pred_boxes = paddle.stack(pred_boxes, axis=-1) if max_shape is not None: pred_boxes[..., 0::2] = pred_boxes[..., 0::2].clip( min=0, max=max_shape[1]) pred_boxes[..., 1::2] = pred_boxes[..., 1::2].clip( min=0, max=max_shape[0]) return pred_boxes def expand_bbox(bboxes, scale): w_half = (bboxes[:, 2] - bboxes[:, 0]) * .5 h_half = (bboxes[:, 3] - bboxes[:, 1]) * .5 x_c = (bboxes[:, 2] + bboxes[:, 0]) * .5 y_c = (bboxes[:, 3] + bboxes[:, 1]) * .5 w_half *= scale h_half *= scale bboxes_exp = np.zeros(bboxes.shape, dtype=np.float32) bboxes_exp[:, 0] = x_c - w_half bboxes_exp[:, 2] = x_c + w_half bboxes_exp[:, 1] = y_c - h_half bboxes_exp[:, 3] = y_c + h_half return bboxes_exp def clip_bbox(boxes, im_shape): h, w = im_shape[0], im_shape[1] x1 = boxes[:, 0].clip(0, w) y1 = boxes[:, 1].clip(0, h) x2 = boxes[:, 2].clip(0, w) y2 = boxes[:, 3].clip(0, h) return paddle.stack([x1, y1, x2, y2], axis=1) def nonempty_bbox(boxes, min_size=0, return_mask=False): w = boxes[:, 2] - boxes[:, 0] h = boxes[:, 3] - boxes[:, 1] mask = paddle.logical_and(h > min_size, w > min_size) if return_mask: return mask keep = paddle.nonzero(mask).flatten() return keep def bbox_area(boxes): return (boxes[:, 2] - boxes[:, 0]) * (boxes[:, 3] - boxes[:, 1]) def bbox_overlaps(boxes1, boxes2): """ Calculate overlaps between boxes1 and boxes2 Args: boxes1 (Tensor): boxes with shape [M, 4] boxes2 (Tensor): boxes with shape [N, 4] Return: overlaps (Tensor): overlaps between boxes1 and boxes2 with shape [M, N] """ M = boxes1.shape[0] N = boxes2.shape[0] if M * N == 0: return paddle.zeros([M, N], dtype='float32') area1 = bbox_area(boxes1) area2 = bbox_area(boxes2) xy_max = paddle.minimum( paddle.unsqueeze(boxes1, 1)[:, :, 2:], boxes2[:, 2:]) xy_min = paddle.maximum( paddle.unsqueeze(boxes1, 1)[:, :, :2], boxes2[:, :2]) width_height = xy_max - xy_min width_height = width_height.clip(min=0) inter = width_height.prod(axis=2) overlaps = paddle.where(inter > 0, inter / (paddle.unsqueeze(area1, 1) + area2 - inter), paddle.zeros_like(inter)) return overlaps def batch_bbox_overlaps(bboxes1, bboxes2, mode='iou', is_aligned=False, eps=1e-6): """Calculate overlap between two set of bboxes. If ``is_aligned `` is ``False``, then calculate the overlaps between each bbox of bboxes1 and bboxes2, otherwise the overlaps between each aligned pair of bboxes1 and bboxes2. Args: bboxes1 (Tensor): shape (B, m, 4) in format or empty. bboxes2 (Tensor): shape (B, n, 4) in format or empty. B indicates the batch dim, in shape (B1, B2, ..., Bn). If ``is_aligned `` is ``True``, then m and n must be equal. mode (str): "iou" (intersection over union) or "iof" (intersection over foreground). is_aligned (bool, optional): If True, then m and n must be equal. Default False. eps (float, optional): A value added to the denominator for numerical stability. Default 1e-6. Returns: Tensor: shape (m, n) if ``is_aligned `` is False else shape (m,) """ assert mode in ['iou', 'iof', 'giou'], 'Unsupported mode {}'.format(mode) # Either the boxes are empty or the length of boxes's last dimenstion is 4 assert (bboxes1.shape[-1] == 4 or bboxes1.shape[0] == 0) assert (bboxes2.shape[-1] == 4 or bboxes2.shape[0] == 0) # Batch dim must be the same # Batch dim: (B1, B2, ... Bn) assert bboxes1.shape[:-2] == bboxes2.shape[:-2] batch_shape = bboxes1.shape[:-2] rows = bboxes1.shape[-2] if bboxes1.shape[0] > 0 else 0 cols = bboxes2.shape[-2] if bboxes2.shape[0] > 0 else 0 if is_aligned: assert rows == cols if rows * cols == 0: if is_aligned: return paddle.full(batch_shape + (rows, ), 1) else: return paddle.full(batch_shape + (rows, cols), 1) area1 = (bboxes1[:, 2] - bboxes1[:, 0]) * (bboxes1[:, 3] - bboxes1[:, 1]) area2 = (bboxes2[:, 2] - bboxes2[:, 0]) * (bboxes2[:, 3] - bboxes2[:, 1]) if is_aligned: lt = paddle.maximum(bboxes1[:, :2], bboxes2[:, :2]) # [B, rows, 2] rb = paddle.minimum(bboxes1[:, 2:], bboxes2[:, 2:]) # [B, rows, 2] wh = (rb - lt).clip(min=0) # [B, rows, 2] overlap = wh[:, 0] * wh[:, 1] if mode in ['iou', 'giou']: union = area1 + area2 - overlap else: union = area1 if mode == 'giou': enclosed_lt = paddle.minimum(bboxes1[:, :2], bboxes2[:, :2]) enclosed_rb = paddle.maximum(bboxes1[:, 2:], bboxes2[:, 2:]) else: lt = paddle.maximum(bboxes1[:, :2].reshape([rows, 1, 2]), bboxes2[:, :2]) # [B, rows, cols, 2] rb = paddle.minimum(bboxes1[:, 2:].reshape([rows, 1, 2]), bboxes2[:, 2:]) # [B, rows, cols, 2] wh = (rb - lt).clip(min=0) # [B, rows, cols, 2] overlap = wh[:, :, 0] * wh[:, :, 1] if mode in ['iou', 'giou']: union = area1.reshape([rows,1]) \ + area2.reshape([1,cols]) - overlap else: union = area1[:, None] if mode == 'giou': enclosed_lt = paddle.minimum(bboxes1[:, :2].reshape([rows, 1, 2]), bboxes2[:, :2]) enclosed_rb = paddle.maximum(bboxes1[:, 2:].reshape([rows, 1, 2]), bboxes2[:, 2:]) eps = paddle.to_tensor([eps]) union = paddle.maximum(union, eps) ious = overlap / union if mode in ['iou', 'iof']: return ious # calculate gious enclose_wh = (enclosed_rb - enclosed_lt).clip(min=0) enclose_area = enclose_wh[:, :, 0] * enclose_wh[:, :, 1] enclose_area = paddle.maximum(enclose_area, eps) gious = ious - (enclose_area - union) / enclose_area return 1 - gious def xywh2xyxy(box): x, y, w, h = box x1 = x - w * 0.5 y1 = y - h * 0.5 x2 = x + w * 0.5 y2 = y + h * 0.5 return [x1, y1, x2, y2] def make_grid(h, w, dtype): yv, xv = paddle.meshgrid([paddle.arange(h), paddle.arange(w)]) return paddle.stack((xv, yv), 2).cast(dtype=dtype) def decode_yolo(box, anchor, downsample_ratio): """decode yolo box Args: box (list): [x, y, w, h], all have the shape [b, na, h, w, 1] anchor (list): anchor with the shape [na, 2] downsample_ratio (int): downsample ratio, default 32 scale (float): scale, default 1. Return: box (list): decoded box, [x, y, w, h], all have the shape [b, na, h, w, 1] """ x, y, w, h = box na, grid_h, grid_w = x.shape[1:4] grid = make_grid(grid_h, grid_w, x.dtype).reshape((1, 1, grid_h, grid_w, 2)) x1 = (x + grid[:, :, :, :, 0:1]) / grid_w y1 = (y + grid[:, :, :, :, 1:2]) / grid_h anchor = paddle.to_tensor(anchor) anchor = paddle.cast(anchor, x.dtype) anchor = anchor.reshape((1, na, 1, 1, 2)) w1 = paddle.exp(w) * anchor[:, :, :, :, 0:1] / (downsample_ratio * grid_w) h1 = paddle.exp(h) * anchor[:, :, :, :, 1:2] / (downsample_ratio * grid_h) return [x1, y1, w1, h1] def batch_iou_similarity(box1, box2, eps=1e-9): """Calculate iou of box1 and box2 in batch Args: box1 (Tensor): box with the shape [N, M1, 4] box2 (Tensor): box with the shape [N, M2, 4] Return: iou (Tensor): iou between box1 and box2 with the shape [N, M1, M2] """ box1 = box1.unsqueeze(2) # [N, M1, 4] -> [N, M1, 1, 4] box2 = box2.unsqueeze(1) # [N, M2, 4] -> [N, 1, M2, 4] px1y1, px2y2 = box1[:, :, :, 0:2], box1[:, :, :, 2:4] gx1y1, gx2y2 = box2[:, :, :, 0:2], box2[:, :, :, 2:4] x1y1 = paddle.maximum(px1y1, gx1y1) x2y2 = paddle.minimum(px2y2, gx2y2) overlap = (x2y2 - x1y1).clip(0).prod(-1) area1 = (px2y2 - px1y1).clip(0).prod(-1) area2 = (gx2y2 - gx1y1).clip(0).prod(-1) union = area1 + area2 - overlap + eps return overlap / union def bbox_iou(box1, box2, giou=False, diou=False, ciou=False, eps=1e-9): """calculate the iou of box1 and box2 Args: box1 (list): [x, y, w, h], all have the shape [b, na, h, w, 1] box2 (list): [x, y, w, h], all have the shape [b, na, h, w, 1] giou (bool): whether use giou or not, default False diou (bool): whether use diou or not, default False ciou (bool): whether use ciou or not, default False eps (float): epsilon to avoid divide by zero Return: iou (Tensor): iou of box1 and box1, with the shape [b, na, h, w, 1] """ px1, py1, px2, py2 = box1 gx1, gy1, gx2, gy2 = box2 x1 = paddle.maximum(px1, gx1) y1 = paddle.maximum(py1, gy1) x2 = paddle.minimum(px2, gx2) y2 = paddle.minimum(py2, gy2) overlap = ((x2 - x1).clip(0)) * ((y2 - y1).clip(0)) area1 = (px2 - px1) * (py2 - py1) area1 = area1.clip(0) area2 = (gx2 - gx1) * (gy2 - gy1) area2 = area2.clip(0) union = area1 + area2 - overlap + eps iou = overlap / union if giou or ciou or diou: # convex w, h cw = paddle.maximum(px2, gx2) - paddle.minimum(px1, gx1) ch = paddle.maximum(py2, gy2) - paddle.minimum(py1, gy1) if giou: c_area = cw * ch + eps return iou - (c_area - union) / c_area else: # convex diagonal squared c2 = cw**2 + ch**2 + eps # center distance rho2 = ((px1 + px2 - gx1 - gx2)**2 + (py1 + py2 - gy1 - gy2)**2) / 4 if diou: return iou - rho2 / c2 else: w1, h1 = px2 - px1, py2 - py1 + eps w2, h2 = gx2 - gx1, gy2 - gy1 + eps delta = paddle.atan(w1 / h1) - paddle.atan(w2 / h2) v = (4 / math.pi**2) * paddle.pow(delta, 2) alpha = v / (1 + eps - iou + v) alpha.stop_gradient = True return iou - (rho2 / c2 + v * alpha) else: return iou def bbox_iou_np_expand(box1, box2, x1y1x2y2=True, eps=1e-16): """ Calculate the iou of box1 and box2 with numpy. Args: box1 (ndarray): [N, 4] box2 (ndarray): [M, 4], usually N != M x1y1x2y2 (bool): whether in x1y1x2y2 stype, default True eps (float): epsilon to avoid divide by zero Return: iou (ndarray): iou of box1 and box2, [N, M] """ N, M = len(box1), len(box2) # usually N != M if x1y1x2y2: b1_x1, b1_y1 = box1[:, 0], box1[:, 1] b1_x2, b1_y2 = box1[:, 2], box1[:, 3] b2_x1, b2_y1 = box2[:, 0], box2[:, 1] b2_x2, b2_y2 = box2[:, 2], box2[:, 3] else: # cxcywh style # Transform from center and width to exact coordinates b1_x1, b1_x2 = box1[:, 0] - box1[:, 2] / 2, box1[:, 0] + box1[:, 2] / 2 b1_y1, b1_y2 = box1[:, 1] - box1[:, 3] / 2, box1[:, 1] + box1[:, 3] / 2 b2_x1, b2_x2 = box2[:, 0] - box2[:, 2] / 2, box2[:, 0] + box2[:, 2] / 2 b2_y1, b2_y2 = box2[:, 1] - box2[:, 3] / 2, box2[:, 1] + box2[:, 3] / 2 # get the coordinates of the intersection rectangle inter_rect_x1 = np.zeros((N, M), dtype=np.float32) inter_rect_y1 = np.zeros((N, M), dtype=np.float32) inter_rect_x2 = np.zeros((N, M), dtype=np.float32) inter_rect_y2 = np.zeros((N, M), dtype=np.float32) for i in range(len(box2)): inter_rect_x1[:, i] = np.maximum(b1_x1, b2_x1[i]) inter_rect_y1[:, i] = np.maximum(b1_y1, b2_y1[i]) inter_rect_x2[:, i] = np.minimum(b1_x2, b2_x2[i]) inter_rect_y2[:, i] = np.minimum(b1_y2, b2_y2[i]) # Intersection area inter_area = np.maximum(inter_rect_x2 - inter_rect_x1, 0) * np.maximum( inter_rect_y2 - inter_rect_y1, 0) # Union Area b1_area = np.repeat( ((b1_x2 - b1_x1) * (b1_y2 - b1_y1)).reshape(-1, 1), M, axis=-1) b2_area = np.repeat( ((b2_x2 - b2_x1) * (b2_y2 - b2_y1)).reshape(1, -1), N, axis=0) ious = inter_area / (b1_area + b2_area - inter_area + eps) return ious def bbox2distance(points, bbox, max_dis=None, eps=0.1): """Decode bounding box based on distances. Args: points (Tensor): Shape (n, 2), [x, y]. bbox (Tensor): Shape (n, 4), "xyxy" format max_dis (float): Upper bound of the distance. eps (float): a small value to ensure target < max_dis, instead <= Returns: Tensor: Decoded distances. """ left = points[:, 0] - bbox[:, 0] top = points[:, 1] - bbox[:, 1] right = bbox[:, 2] - points[:, 0] bottom = bbox[:, 3] - points[:, 1] if max_dis is not None: left = left.clip(min=0, max=max_dis - eps) top = top.clip(min=0, max=max_dis - eps) right = right.clip(min=0, max=max_dis - eps) bottom = bottom.clip(min=0, max=max_dis - eps) return paddle.stack([left, top, right, bottom], -1) def distance2bbox(points, distance, max_shape=None): """Decode distance prediction to bounding box. Args: points (Tensor): Shape (n, 2), [x, y]. distance (Tensor): Distance from the given point to 4 boundaries (left, top, right, bottom). max_shape (tuple): Shape of the image. Returns: Tensor: Decoded bboxes. """ x1 = points[:, 0] - distance[:, 0] y1 = points[:, 1] - distance[:, 1] x2 = points[:, 0] + distance[:, 2] y2 = points[:, 1] + distance[:, 3] if max_shape is not None: x1 = x1.clip(min=0, max=max_shape[1]) y1 = y1.clip(min=0, max=max_shape[0]) x2 = x2.clip(min=0, max=max_shape[1]) y2 = y2.clip(min=0, max=max_shape[0]) return paddle.stack([x1, y1, x2, y2], -1) def bbox_center(boxes): """Get bbox centers from boxes. Args: boxes (Tensor): boxes with shape (..., 4), "xmin, ymin, xmax, ymax" format. Returns: Tensor: boxes centers with shape (..., 2), "cx, cy" format. """ boxes_cx = (boxes[..., 0] + boxes[..., 2]) / 2 boxes_cy = (boxes[..., 1] + boxes[..., 3]) / 2 return paddle.stack([boxes_cx, boxes_cy], axis=-1) def batch_distance2bbox(points, distance, max_shapes=None): """Decode distance prediction to bounding box for batch. Args: points (Tensor): [B, ..., 2], "xy" format distance (Tensor): [B, ..., 4], "ltrb" format max_shapes (Tensor): [B, 2], "h,w" format, Shape of the image. Returns: Tensor: Decoded bboxes, "x1y1x2y2" format. """ lt, rb = paddle.split(distance, 2, -1) # while tensor add parameters, parameters should be better placed on the second place x1y1 = -lt + points x2y2 = rb + points out_bbox = paddle.concat([x1y1, x2y2], -1) if max_shapes is not None: max_shapes = max_shapes.flip(-1).tile([1, 2]) delta_dim = out_bbox.ndim - max_shapes.ndim for _ in range(delta_dim): max_shapes.unsqueeze_(1) out_bbox = paddle.where(out_bbox < max_shapes, out_bbox, max_shapes) out_bbox = paddle.where(out_bbox > 0, out_bbox, paddle.zeros_like(out_bbox)) return out_bbox def iou_similarity(box1, box2, eps=1e-10): """Calculate iou of box1 and box2 Args: box1 (Tensor): box with the shape [M1, 4] box2 (Tensor): box with the shape [M2, 4] Return: iou (Tensor): iou between box1 and box2 with the shape [M1, M2] """ box1 = box1.unsqueeze(1) # [M1, 4] -> [M1, 1, 4] box2 = box2.unsqueeze(0) # [M2, 4] -> [1, M2, 4] px1y1, px2y2 = box1[:, :, 0:2], box1[:, :, 2:4] gx1y1, gx2y2 = box2[:, :, 0:2], box2[:, :, 2:4] x1y1 = paddle.maximum(px1y1, gx1y1) x2y2 = paddle.minimum(px2y2, gx2y2) overlap = (x2y2 - x1y1).clip(0).prod(-1) area1 = (px2y2 - px1y1).clip(0).prod(-1) area2 = (gx2y2 - gx1y1).clip(0).prod(-1) union = area1 + area2 - overlap + eps return overlap / union