# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import from __future__ import division from __future__ import print_function import paddle import paddle.nn as nn import paddle.nn.functional as F from ppdet.core.workspace import register import pycocotools.mask as mask_util from ..initializer import linear_init_, constant_ from ..transformers.utils import inverse_sigmoid __all__ = ['DETRHead', 'DeformableDETRHead', 'DINOHead', 'MaskDINOHead'] class MLP(nn.Layer): """This code is based on https://github.com/facebookresearch/detr/blob/main/models/detr.py """ def __init__(self, input_dim, hidden_dim, output_dim, num_layers): super().__init__() self.num_layers = num_layers h = [hidden_dim] * (num_layers - 1) self.layers = nn.LayerList( nn.Linear(n, k) for n, k in zip([input_dim] + h, h + [output_dim])) self._reset_parameters() def _reset_parameters(self): for l in self.layers: linear_init_(l) def forward(self, x): for i, layer in enumerate(self.layers): x = F.relu(layer(x)) if i < self.num_layers - 1 else layer(x) return x class MultiHeadAttentionMap(nn.Layer): """This code is based on https://github.com/facebookresearch/detr/blob/main/models/segmentation.py This is a 2D attention module, which only returns the attention softmax (no multiplication by value) """ def __init__(self, query_dim, hidden_dim, num_heads, dropout=0.0, bias=True): super().__init__() self.num_heads = num_heads self.hidden_dim = hidden_dim self.dropout = nn.Dropout(dropout) weight_attr = paddle.ParamAttr( initializer=paddle.nn.initializer.XavierUniform()) bias_attr = paddle.framework.ParamAttr( initializer=paddle.nn.initializer.Constant()) if bias else False self.q_proj = nn.Linear(query_dim, hidden_dim, weight_attr, bias_attr) self.k_proj = nn.Conv2D( query_dim, hidden_dim, 1, weight_attr=weight_attr, bias_attr=bias_attr) self.normalize_fact = float(hidden_dim / self.num_heads)**-0.5 def forward(self, q, k, mask=None): q = self.q_proj(q) k = self.k_proj(k) bs, num_queries, n, c, h, w = q.shape[0], q.shape[1], self.num_heads,\ self.hidden_dim // self.num_heads, k.shape[-2], k.shape[-1] qh = q.reshape([bs, num_queries, n, c]) kh = k.reshape([bs, n, c, h, w]) # weights = paddle.einsum("bqnc,bnchw->bqnhw", qh * self.normalize_fact, kh) qh = qh.transpose([0, 2, 1, 3]).reshape([-1, num_queries, c]) kh = kh.reshape([-1, c, h * w]) weights = paddle.bmm(qh * self.normalize_fact, kh).reshape( [bs, n, num_queries, h, w]).transpose([0, 2, 1, 3, 4]) if mask is not None: weights += mask # fix a potenial bug: https://github.com/facebookresearch/detr/issues/247 weights = F.softmax(weights.flatten(3), axis=-1).reshape(weights.shape) weights = self.dropout(weights) return weights class MaskHeadFPNConv(nn.Layer): """This code is based on https://github.com/facebookresearch/detr/blob/main/models/segmentation.py Simple convolutional head, using group norm. Upsampling is done using a FPN approach """ def __init__(self, input_dim, fpn_dims, context_dim, num_groups=8): super().__init__() inter_dims = [input_dim, ] + [context_dim // (2**i) for i in range(1, 5)] weight_attr = paddle.ParamAttr( initializer=paddle.nn.initializer.KaimingUniform()) bias_attr = paddle.framework.ParamAttr( initializer=paddle.nn.initializer.Constant()) self.conv0 = self._make_layers(input_dim, input_dim, 3, num_groups, weight_attr, bias_attr) self.conv_inter = nn.LayerList() for in_dims, out_dims in zip(inter_dims[:-1], inter_dims[1:]): self.conv_inter.append( self._make_layers(in_dims, out_dims, 3, num_groups, weight_attr, bias_attr)) self.conv_out = nn.Conv2D( inter_dims[-1], 1, 3, padding=1, weight_attr=weight_attr, bias_attr=bias_attr) self.adapter = nn.LayerList() for i in range(len(fpn_dims)): self.adapter.append( nn.Conv2D( fpn_dims[i], inter_dims[i + 1], 1, weight_attr=weight_attr, bias_attr=bias_attr)) def _make_layers(self, in_dims, out_dims, kernel_size, num_groups, weight_attr=None, bias_attr=None): return nn.Sequential( nn.Conv2D( in_dims, out_dims, kernel_size, padding=kernel_size // 2, weight_attr=weight_attr, bias_attr=bias_attr), nn.GroupNorm(num_groups, out_dims), nn.ReLU()) def forward(self, x, bbox_attention_map, fpns): x = paddle.concat([ x.tile([bbox_attention_map.shape[1], 1, 1, 1]), bbox_attention_map.flatten(0, 1) ], 1) x = self.conv0(x) for inter_layer, adapter_layer, feat in zip(self.conv_inter[:-1], self.adapter, fpns): feat = adapter_layer(feat).tile( [bbox_attention_map.shape[1], 1, 1, 1]) x = inter_layer(x) x = feat + F.interpolate(x, size=feat.shape[-2:]) x = self.conv_inter[-1](x) x = self.conv_out(x) return x @register class DETRHead(nn.Layer): __shared__ = ['num_classes', 'hidden_dim', 'use_focal_loss'] __inject__ = ['loss'] def __init__(self, num_classes=80, hidden_dim=256, nhead=8, num_mlp_layers=3, loss='DETRLoss', fpn_dims=[1024, 512, 256], with_mask_head=False, use_focal_loss=False): super(DETRHead, self).__init__() # add background class self.num_classes = num_classes if use_focal_loss else num_classes + 1 self.hidden_dim = hidden_dim self.loss = loss self.with_mask_head = with_mask_head self.use_focal_loss = use_focal_loss self.score_head = nn.Linear(hidden_dim, self.num_classes) self.bbox_head = MLP(hidden_dim, hidden_dim, output_dim=4, num_layers=num_mlp_layers) if self.with_mask_head: self.bbox_attention = MultiHeadAttentionMap(hidden_dim, hidden_dim, nhead) self.mask_head = MaskHeadFPNConv(hidden_dim + nhead, fpn_dims, hidden_dim) self._reset_parameters() def _reset_parameters(self): linear_init_(self.score_head) @classmethod def from_config(cls, cfg, hidden_dim, nhead, input_shape): return { 'hidden_dim': hidden_dim, 'nhead': nhead, 'fpn_dims': [i.channels for i in input_shape[::-1]][1:] } @staticmethod def get_gt_mask_from_polygons(gt_poly, pad_mask): out_gt_mask = [] for polygons, padding in zip(gt_poly, pad_mask): height, width = int(padding[:, 0].sum()), int(padding[0, :].sum()) masks = [] for obj_poly in polygons: rles = mask_util.frPyObjects(obj_poly, height, width) rle = mask_util.merge(rles) masks.append( paddle.to_tensor(mask_util.decode(rle)).astype('float32')) masks = paddle.stack(masks) masks_pad = paddle.zeros( [masks.shape[0], pad_mask.shape[1], pad_mask.shape[2]]) masks_pad[:, :height, :width] = masks out_gt_mask.append(masks_pad) return out_gt_mask def forward(self, out_transformer, body_feats, inputs=None): r""" Args: out_transformer (Tuple): (feats: [num_levels, batch_size, num_queries, hidden_dim], memory: [batch_size, hidden_dim, h, w], src_proj: [batch_size, h*w, hidden_dim], src_mask: [batch_size, 1, 1, h, w]) body_feats (List(Tensor)): list[[B, C, H, W]] inputs (dict): dict(inputs) """ feats, memory, src_proj, src_mask = out_transformer outputs_logit = self.score_head(feats) outputs_bbox = F.sigmoid(self.bbox_head(feats)) outputs_seg = None if self.with_mask_head: bbox_attention_map = self.bbox_attention(feats[-1], memory, src_mask) fpn_feats = [a for a in body_feats[::-1]][1:] outputs_seg = self.mask_head(src_proj, bbox_attention_map, fpn_feats) outputs_seg = outputs_seg.reshape([ feats.shape[1], feats.shape[2], outputs_seg.shape[-2], outputs_seg.shape[-1] ]) if self.training: assert inputs is not None assert 'gt_bbox' in inputs and 'gt_class' in inputs gt_mask = self.get_gt_mask_from_polygons( inputs['gt_poly'], inputs['pad_mask']) if 'gt_poly' in inputs else None return self.loss( outputs_bbox, outputs_logit, inputs['gt_bbox'], inputs['gt_class'], masks=outputs_seg, gt_mask=gt_mask) else: return (outputs_bbox[-1], outputs_logit[-1], outputs_seg) @register class DeformableDETRHead(nn.Layer): __shared__ = ['num_classes', 'hidden_dim'] __inject__ = ['loss'] def __init__(self, num_classes=80, hidden_dim=512, nhead=8, num_mlp_layers=3, loss='DETRLoss'): super(DeformableDETRHead, self).__init__() self.num_classes = num_classes self.hidden_dim = hidden_dim self.nhead = nhead self.loss = loss self.score_head = nn.Linear(hidden_dim, self.num_classes) self.bbox_head = MLP(hidden_dim, hidden_dim, output_dim=4, num_layers=num_mlp_layers) self._reset_parameters() def _reset_parameters(self): linear_init_(self.score_head) constant_(self.score_head.bias, -4.595) constant_(self.bbox_head.layers[-1].weight) with paddle.no_grad(): bias = paddle.zeros_like(self.bbox_head.layers[-1].bias) bias[2:] = -2.0 self.bbox_head.layers[-1].bias.set_value(bias) @classmethod def from_config(cls, cfg, hidden_dim, nhead, input_shape): return {'hidden_dim': hidden_dim, 'nhead': nhead} def forward(self, out_transformer, body_feats, inputs=None): r""" Args: out_transformer (Tuple): (feats: [num_levels, batch_size, num_queries, hidden_dim], memory: [batch_size, \sum_{l=0}^{L-1} H_l \cdot W_l, hidden_dim], reference_points: [batch_size, num_queries, 2]) body_feats (List(Tensor)): list[[B, C, H, W]] inputs (dict): dict(inputs) """ feats, memory, reference_points = out_transformer reference_points = inverse_sigmoid(reference_points.unsqueeze(0)) outputs_bbox = self.bbox_head(feats) # It's equivalent to "outputs_bbox[:, :, :, :2] += reference_points", # but the gradient is wrong in paddle. outputs_bbox = paddle.concat( [ outputs_bbox[:, :, :, :2] + reference_points, outputs_bbox[:, :, :, 2:] ], axis=-1) outputs_bbox = F.sigmoid(outputs_bbox) outputs_logit = self.score_head(feats) if self.training: assert inputs is not None assert 'gt_bbox' in inputs and 'gt_class' in inputs return self.loss(outputs_bbox, outputs_logit, inputs['gt_bbox'], inputs['gt_class']) else: return (outputs_bbox[-1], outputs_logit[-1], None) @register class DINOHead(nn.Layer): __inject__ = ['loss'] def __init__(self, loss='DINOLoss', eval_idx=-1): super(DINOHead, self).__init__() self.loss = loss self.eval_idx = eval_idx def forward(self, out_transformer, body_feats, inputs=None): (dec_out_bboxes, dec_out_logits, enc_topk_bboxes, enc_topk_logits, dn_meta) = out_transformer if self.training: assert inputs is not None assert 'gt_bbox' in inputs and 'gt_class' in inputs if dn_meta is not None: if isinstance(dn_meta, list): dual_groups = len(dn_meta) - 1 dec_out_bboxes = paddle.split( dec_out_bboxes, dual_groups + 1, axis=2) dec_out_logits = paddle.split( dec_out_logits, dual_groups + 1, axis=2) enc_topk_bboxes = paddle.split( enc_topk_bboxes, dual_groups + 1, axis=1) enc_topk_logits = paddle.split( enc_topk_logits, dual_groups + 1, axis=1) dec_out_bboxes_list = [] dec_out_logits_list = [] dn_out_bboxes_list = [] dn_out_logits_list = [] loss = {} for g_id in range(dual_groups + 1): if dn_meta[g_id] is not None: dn_out_bboxes_gid, dec_out_bboxes_gid = paddle.split( dec_out_bboxes[g_id], dn_meta[g_id]['dn_num_split'], axis=2) dn_out_logits_gid, dec_out_logits_gid = paddle.split( dec_out_logits[g_id], dn_meta[g_id]['dn_num_split'], axis=2) else: dn_out_bboxes_gid, dn_out_logits_gid = None, None dec_out_bboxes_gid = dec_out_bboxes[g_id] dec_out_logits_gid = dec_out_logits[g_id] out_bboxes_gid = paddle.concat([ enc_topk_bboxes[g_id].unsqueeze(0), dec_out_bboxes_gid ]) out_logits_gid = paddle.concat([ enc_topk_logits[g_id].unsqueeze(0), dec_out_logits_gid ]) loss_gid = self.loss( out_bboxes_gid, out_logits_gid, inputs['gt_bbox'], inputs['gt_class'], dn_out_bboxes=dn_out_bboxes_gid, dn_out_logits=dn_out_logits_gid, dn_meta=dn_meta[g_id]) # sum loss for key, value in loss_gid.items(): loss.update({ key: loss.get(key, paddle.zeros([1])) + value }) # average across (dual_groups + 1) for key, value in loss.items(): loss.update({key: value / (dual_groups + 1)}) return loss else: dn_out_bboxes, dec_out_bboxes = paddle.split( dec_out_bboxes, dn_meta['dn_num_split'], axis=2) dn_out_logits, dec_out_logits = paddle.split( dec_out_logits, dn_meta['dn_num_split'], axis=2) else: dn_out_bboxes, dn_out_logits = None, None out_bboxes = paddle.concat( [enc_topk_bboxes.unsqueeze(0), dec_out_bboxes]) out_logits = paddle.concat( [enc_topk_logits.unsqueeze(0), dec_out_logits]) return self.loss( out_bboxes, out_logits, inputs['gt_bbox'], inputs['gt_class'], dn_out_bboxes=dn_out_bboxes, dn_out_logits=dn_out_logits, dn_meta=dn_meta, gt_score=inputs.get('gt_score', None)) else: return (dec_out_bboxes[self.eval_idx], dec_out_logits[self.eval_idx], None) @register class MaskDINOHead(nn.Layer): __inject__ = ['loss'] def __init__(self, loss='DINOLoss'): super(MaskDINOHead, self).__init__() self.loss = loss def forward(self, out_transformer, body_feats, inputs=None): (dec_out_logits, dec_out_bboxes, dec_out_masks, enc_out, init_out, dn_meta) = out_transformer if self.training: assert inputs is not None assert 'gt_bbox' in inputs and 'gt_class' in inputs assert 'gt_segm' in inputs if dn_meta is not None: dn_out_logits, dec_out_logits = paddle.split( dec_out_logits, dn_meta['dn_num_split'], axis=2) dn_out_bboxes, dec_out_bboxes = paddle.split( dec_out_bboxes, dn_meta['dn_num_split'], axis=2) dn_out_masks, dec_out_masks = paddle.split( dec_out_masks, dn_meta['dn_num_split'], axis=2) if init_out is not None: init_out_logits, init_out_bboxes, init_out_masks = init_out init_out_logits_dn, init_out_logits = paddle.split( init_out_logits, dn_meta['dn_num_split'], axis=1) init_out_bboxes_dn, init_out_bboxes = paddle.split( init_out_bboxes, dn_meta['dn_num_split'], axis=1) init_out_masks_dn, init_out_masks = paddle.split( init_out_masks, dn_meta['dn_num_split'], axis=1) dec_out_logits = paddle.concat( [init_out_logits.unsqueeze(0), dec_out_logits]) dec_out_bboxes = paddle.concat( [init_out_bboxes.unsqueeze(0), dec_out_bboxes]) dec_out_masks = paddle.concat( [init_out_masks.unsqueeze(0), dec_out_masks]) dn_out_logits = paddle.concat( [init_out_logits_dn.unsqueeze(0), dn_out_logits]) dn_out_bboxes = paddle.concat( [init_out_bboxes_dn.unsqueeze(0), dn_out_bboxes]) dn_out_masks = paddle.concat( [init_out_masks_dn.unsqueeze(0), dn_out_masks]) else: dn_out_bboxes, dn_out_logits = None, None dn_out_masks = None enc_out_logits, enc_out_bboxes, enc_out_masks = enc_out out_logits = paddle.concat( [enc_out_logits.unsqueeze(0), dec_out_logits]) out_bboxes = paddle.concat( [enc_out_bboxes.unsqueeze(0), dec_out_bboxes]) out_masks = paddle.concat( [enc_out_masks.unsqueeze(0), dec_out_masks]) return self.loss( out_bboxes, out_logits, inputs['gt_bbox'], inputs['gt_class'], masks=out_masks, gt_mask=inputs['gt_segm'], dn_out_logits=dn_out_logits, dn_out_bboxes=dn_out_bboxes, dn_out_masks=dn_out_masks, dn_meta=dn_meta) else: return (dec_out_bboxes[-1], dec_out_logits[-1], dec_out_masks[-1])