# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import from __future__ import division from __future__ import print_function import math import paddle import weakref class ModelEMA(object): """ Exponential Weighted Average for Deep Neutal Networks Args: model (nn.Layer): Detector of model. decay (int): The decay used for updating ema parameter. Ema's parameter are updated with the formula: `ema_param = decay * ema_param + (1 - decay) * cur_param`. Defaults is 0.9998. ema_decay_type (str): type in ['threshold', 'normal', 'exponential'], 'threshold' as default. cycle_epoch (int): The epoch of interval to reset ema_param and step. Defaults is -1, which means not reset. Its function is to add a regular effect to ema, which is set according to experience and is effective when the total training epoch is large. """ def __init__(self, model, decay=0.9998, ema_decay_type='threshold', cycle_epoch=-1): self.step = 0 self.epoch = 0 self.decay = decay self.state_dict = dict() for k, v in model.state_dict().items(): self.state_dict[k] = paddle.zeros_like(v) self.ema_decay_type = ema_decay_type self.cycle_epoch = cycle_epoch self._model_state = { k: weakref.ref(p) for k, p in model.state_dict().items() } def reset(self): self.step = 0 self.epoch = 0 for k, v in self.state_dict.items(): self.state_dict[k] = paddle.zeros_like(v) def resume(self, state_dict, step=0): for k, v in state_dict.items(): if k in self.state_dict: self.state_dict[k] = v self.step = step def update(self, model=None): if self.ema_decay_type == 'threshold': decay = min(self.decay, (1 + self.step) / (10 + self.step)) elif self.ema_decay_type == 'exponential': decay = self.decay * (1 - math.exp(-(self.step + 1) / 2000)) else: decay = self.decay self._decay = decay if model is not None: model_dict = model.state_dict() else: model_dict = {k: p() for k, p in self._model_state.items()} assert all( [v is not None for _, v in model_dict.items()]), 'python gc.' for k, v in self.state_dict.items(): v = decay * v + (1 - decay) * model_dict[k] v.stop_gradient = True self.state_dict[k] = v self.step += 1 def apply(self): if self.step == 0: return self.state_dict state_dict = dict() for k, v in self.state_dict.items(): if self.ema_decay_type != 'exponential': v = v / (1 - self._decay**self.step) v.stop_gradient = True state_dict[k] = v self.epoch += 1 if self.cycle_epoch > 0 and self.epoch == self.cycle_epoch: self.reset() return state_dict