# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import from __future__ import division from __future__ import print_function import logging import numpy as np import paddle.fluid as fluid __all__ = ['parse_fetches', 'eval_run', 'eval_results'] logger = logging.getLogger(__name__) def parse_fetches(fetches, prog=None, extra_keys=None): """ Parse fetch variable infos from model fetches, values for fetch_list and keys for stat """ keys, values = [], [] cls = [] for k, v in fetches.items(): if hasattr(v, 'name'): keys.append(k) v.persistable = True values.append(v.name) else: cls.append(v) if prog is not None and extra_keys is not None: for k in extra_keys: try: v = fluid.framework._get_var(k, prog) v.persistable = True keys.append(k) values.append(v.name) except Exception: pass return keys, values, cls def eval_run(exe, compile_program, pyreader, keys, values, cls): """ Run evaluation program, return program outputs. """ iter_id = 0 results = [] if len(cls) != 0: values = [] for i in range(len(cls)): _, accum_map = cls[i].get_map_var() cls[i].reset(exe) values.append(accum_map) try: pyreader.start() while True: outs = exe.run(compile_program, fetch_list=values, return_numpy=False) res = { k: (np.array(v), v.recursive_sequence_lengths()) for k, v in zip(keys, outs) } results.append(res) if iter_id % 100 == 0: logger.info('Test iter {}'.format(iter_id)) iter_id += 1 except (StopIteration, fluid.core.EOFException): pyreader.reset() logger.info('Test finish iter {}'.format(iter_id)) return results def eval_results(results, feed, metric, resolution=None, output_file=None): """Evaluation for evaluation program results""" if metric == 'COCO': from ppdet.utils.coco_eval import bbox_eval, mask_eval anno_file = getattr(feed.dataset, 'annotation', None) with_background = getattr(feed, 'with_background', True) output = 'bbox.json' if output_file: output = '{}_bbox.json'.format(output_file) bbox_eval(results, anno_file, output, with_background) if 'mask' in results[0]: output = 'mask.json' if output_file: output = '{}_mask.json'.format(output_file) mask_eval(results, anno_file, output, resolution) else: res = np.mean(results[-1]['accum_map'][0]) logger.info('Test mAP: {}'.format(res))