# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import from __future__ import division from __future__ import print_function import paddle from ppdet.core.workspace import register from .meta_arch import BaseArch __all__ = ['FCOS'] @register class FCOS(BaseArch): __category__ = 'architecture' __inject__ = [ 'backbone', 'neck', 'fcos_head', 'fcos_post_process', ] def __init__(self, backbone, neck, fcos_head='FCOSHead', fcos_post_process='FCOSPostProcess'): super(FCOS, self).__init__() self.backbone = backbone self.neck = neck self.fcos_head = fcos_head self.fcos_post_process = fcos_post_process def model_arch(self, ): body_feats = self.backbone(self.inputs) fpn_feats, spatial_scale = self.neck(body_feats) self.fcos_head_outs = self.fcos_head(fpn_feats, self.training) if not self.training: self.bboxes = self.fcos_post_process(self.fcos_head_outs, self.inputs['scale_factor']) def get_loss(self, ): loss = {} tag_labels, tag_bboxes, tag_centerness = [], [], [] for i in range(len(self.fcos_head.fpn_stride)): # reg_target, labels, scores, centerness k_lbl = 'labels{}'.format(i) if k_lbl in self.inputs: tag_labels.append(self.inputs[k_lbl]) k_box = 'reg_target{}'.format(i) if k_box in self.inputs: tag_bboxes.append(self.inputs[k_box]) k_ctn = 'centerness{}'.format(i) if k_ctn in self.inputs: tag_centerness.append(self.inputs[k_ctn]) loss_fcos = self.fcos_head.get_loss(self.fcos_head_outs, tag_labels, tag_bboxes, tag_centerness) loss.update(loss_fcos) total_loss = paddle.add_n(list(loss.values())) loss.update({'loss': total_loss}) return loss def get_pred(self): bbox, bbox_num = self.bboxes output = { 'bbox': bbox, 'bbox_num': bbox_num, } return output