# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import from __future__ import division from __future__ import print_function from paddle import fluid from ppdet.core.workspace import register from ppdet.modeling.ops import BBoxAssigner, MaskAssigner __all__ = [ 'BBoxAssigner', 'MaskAssigner', 'CascadeBBoxAssigner', ] @register class CascadeBBoxAssigner(object): __shared__ = ['num_classes'] def __init__(self, batch_size_per_im=512, fg_fraction=.25, fg_thresh=[0.5, 0.6, 0.7], bg_thresh_hi=[0.5, 0.6, 0.7], bg_thresh_lo=[0., 0., 0.], bbox_reg_weights=[10, 20, 30], shuffle_before_sample=True, num_classes=81, class_aware=False): super(CascadeBBoxAssigner, self).__init__() self.batch_size_per_im = batch_size_per_im self.fg_fraction = fg_fraction self.fg_thresh = fg_thresh self.bg_thresh_hi = bg_thresh_hi self.bg_thresh_lo = bg_thresh_lo self.bbox_reg_weights = bbox_reg_weights self.class_nums = num_classes self.use_random = shuffle_before_sample self.class_aware = class_aware def __call__(self, input_rois, feed_vars, curr_stage): curr_bbox_reg_w = [ 1. / self.bbox_reg_weights[curr_stage], 1. / self.bbox_reg_weights[curr_stage], 2. / self.bbox_reg_weights[curr_stage], 2. / self.bbox_reg_weights[curr_stage], ] outs = fluid.layers.generate_proposal_labels( rpn_rois=input_rois, gt_classes=feed_vars['gt_class'], is_crowd=feed_vars['is_crowd'], gt_boxes=feed_vars['gt_bbox'], im_info=feed_vars['im_info'], batch_size_per_im=self.batch_size_per_im, fg_thresh=self.fg_thresh[curr_stage], bg_thresh_hi=self.bg_thresh_hi[curr_stage], bg_thresh_lo=self.bg_thresh_lo[curr_stage], bbox_reg_weights=curr_bbox_reg_w, use_random=self.use_random, class_nums=self.class_nums if self.class_aware else 2, is_cls_agnostic=not self.class_aware, is_cascade_rcnn=True if curr_stage > 0 and not self.class_aware else False) return outs