/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #include "MultiBoxLossLayer.h" #include #include #include "DataLayer.h" namespace paddle { REGISTER_LAYER(multibox_loss, MultiBoxLossLayer); bool MultiBoxLossLayer::init(const LayerMap& layerMap, const ParameterMap& parameterMap) { Layer::init(layerMap, parameterMap); auto layerConf = config_.inputs(0).multibox_loss_conf(); numClasses_ = layerConf.num_classes(); inputNum_ = layerConf.input_num(); overlapThreshold_ = layerConf.overlap_threshold(); negPosRatio_ = layerConf.neg_pos_ratio(); negOverlap_ = layerConf.neg_overlap(); backgroundId_ = layerConf.background_id(); return true; } void MultiBoxLossLayer::forward(PassType passType) { Layer::forward(passType); size_t batchSize = getInputValue(*getLocInputLayer(0))->getHeight(); resetOutput(batchSize, 1); // all location data and confidence score data locSizeSum_ = 0; confSizeSum_ = 0; for (size_t n = 0; n < inputNum_; ++n) { const MatrixPtr inLoc = getInputValue(*getLocInputLayer(n)); const MatrixPtr inConf = getInputValue(*getConfInputLayer(n)); locSizeSum_ += inLoc->getElementCnt(); confSizeSum_ += inConf->getElementCnt(); } // locBuffer layout: // | xmin1 | ymin1 | xmax1 | ymax1 | xmin2 ...... Matrix::resizeOrCreate(locTmpBuffer_, 1, locSizeSum_, false, useGpu_); locBuffer_ = locTmpBuffer_; // confBuffer layout: // | class1 score | class2 score | ... |classN score | class1 score | ...... Matrix::resizeOrCreate(confTmpBuffer_, 1, confSizeSum_, false, useGpu_); confBuffer_ = confTmpBuffer_; // concate location data and confidence score data size_t locOffset = 0; size_t confOffset = 0; auto& layerConf = config_.inputs(0).multibox_loss_conf(); for (size_t n = 0; n < inputNum_; ++n) { const MatrixPtr inLoc = getInputValue(*getLocInputLayer(n)); const MatrixPtr inConf = getInputValue(*getConfInputLayer(n)); size_t height = getInput(*getLocInputLayer(n)).getFrameHeight(); if (!height) height = layerConf.height(); size_t width = getInput(*getLocInputLayer(n)).getFrameWidth(); if (!width) width = layerConf.width(); locOffset += appendWithPermute(*inLoc, height, width, locSizeSum_, locOffset, batchSize, *locBuffer_, kNCHWToNHWC); confOffset += appendWithPermute(*inConf, height, width, confSizeSum_, confOffset, batchSize, *confBuffer_, kNCHWToNHWC); } CHECK_EQ(locOffset, locSizeSum_ / batchSize); CHECK_EQ(confOffset, confSizeSum_ / batchSize); // priorValue layout: // | xmin1 | ymin1 | xmax1 | ymax1 | xmin1Var | ymin1Var | xmax1Var | ymax1Var // | xmin2 | ...... MatrixPtr priorValue; // labelValue layout: // | class1_1 | xmin1_1 | ymin1_1 | xmax1_1 | ymax1_1 | difficult1_1 | ...... MatrixPtr labelValue; // Copy data from GPU to CPU if use GPU if (useGpu_) { Matrix::resizeOrCreate(locCpuBuffer_, 1, locSizeSum_, false, false); Matrix::resizeOrCreate(confCpuBuffer_, 1, confSizeSum_, false, false); MatrixPtr priorTmpValue = getInputValue(*getPriorBoxLayer()); Matrix::resizeOrCreate( priorCpuValue_, 1, priorTmpValue->getElementCnt(), false, false); MatrixPtr labelTmpValue = getInputValue(*getLabelLayer()); Matrix::resizeOrCreate(labelCpuValue_, labelTmpValue->getHeight(), labelTmpValue->getWidth(), false, false); locCpuBuffer_->copyFrom(*locTmpBuffer_); confCpuBuffer_->copyFrom(*confTmpBuffer_); priorCpuValue_->copyFrom(*priorTmpValue); labelCpuValue_->copyFrom(*labelTmpValue); locBuffer_ = locCpuBuffer_; confBuffer_ = confCpuBuffer_; priorValue = priorCpuValue_; labelValue = labelCpuValue_; } else { priorValue = getInputValue(*getPriorBoxLayer()); labelValue = getInputValue(*getLabelLayer()); } // Get max scores for each prior bbox. Used in negative mining std::vector> allMaxConfScore; numPriors_ = priorValue->getElementCnt() / 8; getMaxConfidenceScores(confBuffer_->getData(), batchSize, numPriors_, numClasses_, backgroundId_, &allMaxConfScore); // Match prior bbox to groundtruth bbox Argument label = getInput(*getLabelLayer()); const int* labelIndex = label.sequenceStartPositions->getData(false); size_t seqNum = label.getNumSequences(); numMatches_ = 0; numNegs_ = 0; allMatchIndices_.clear(); allNegIndices_.clear(); std::pair retPair = generateMatchIndices(*priorValue, numPriors_, *labelValue, labelIndex, seqNum, allMaxConfScore, batchSize, overlapThreshold_, negOverlap_, negPosRatio_, &allMatchIndices_, &allNegIndices_); numMatches_ = retPair.first; numNegs_ = retPair.second; // BBox location L1 smooth loss locLoss_ = 0.0; if (numMatches_ >= 1) { size_t count = 0; MatrixPtr locLossOutput; Matrix::resizeOrCreate(locLossOutput, numMatches_ * 4, 1, false, false); Matrix::resizeOrCreate(locGTData_, numMatches_ * 4, 1, false, false); Matrix::resizeOrCreate(locDiff_, numMatches_ * 4, 1, false, false); locDiff_->zeroMem(); std::vector locGTData; real* locDiffData = locDiff_->getData(); const real* locBufferData = locBuffer_->getData(); for (size_t n = 0; n < batchSize; ++n) { for (size_t i = 0; i < numPriors_; ++i) { if (allMatchIndices_[n][i] == -1) continue; // match none size_t locOffset = n * (locBuffer_->getElementCnt() / batchSize) + i * 4; std::copy(locBufferData + locOffset, locBufferData + locOffset + 4, locDiffData + count); count += 4; const int gtIdx = allMatchIndices_[n][i]; size_t priorOffset = i * 8; std::vector priorBBoxVec; getBBoxFromPriorData( priorValue->getData() + priorOffset, 1, priorBBoxVec); std::vector> priorBBoxVar; getBBoxVarFromPriorData( priorValue->getData() + priorOffset, 1, priorBBoxVar); size_t labelOffset = (labelIndex[n] + gtIdx) * 6; std::vector gtBBoxVec; getBBoxFromLabelData(labelValue->getData() + labelOffset, 1, gtBBoxVec); std::vector gtEncode; encodeBBoxWithVar( priorBBoxVec[0], priorBBoxVar[0], gtBBoxVec[0], gtEncode); locGTData.insert(locGTData.end(), gtEncode.begin(), gtEncode.end()); } } locGTData_->copyFrom(&locGTData[0], numMatches_ * 4); locLossOutput->smoothL1(*locDiff_, *locGTData_, 0.0); locLoss_ = locLossOutput->getSum() / numMatches_; } // BBox confidence softmax loss confLoss_ = 0; numConf_ = numMatches_ + numNegs_; if (numConf_ >= 1) { Matrix::resizeOrCreate(confProb_, numConf_, numClasses_, false, false); IVector::resizeOrCreate(confGTData_, numConf_, false); confProb_->zeroMem(); size_t count = 0; std::vector confPredData; real* confProbData = confProb_->getData(); const real* confBufferData = confBuffer_->getData(); for (size_t n = 0; n < batchSize; ++n) { for (size_t i = 0; i < numPriors_; ++i) { if (allMatchIndices_[n][i] == -1) continue; size_t labelOffset = (labelIndex[n] + allMatchIndices_[n][i]) * 6; const int gtLabel = (labelValue->getData() + labelOffset)[0]; confGTData_->getData()[count] = gtLabel; size_t confOffset = n * numPriors_ * numClasses_ + i * numClasses_; std::copy(confBufferData + confOffset, confBufferData + confOffset + numClasses_, confProbData + count * numClasses_); confPredData.reserve(confPredData.size() + numClasses_); confPredData.insert(confPredData.end(), confBufferData + confOffset, confBufferData + confOffset + numClasses_); ++count; } // Negative mining samples for (size_t i = 0; i < allNegIndices_[n].size(); ++i) { confGTData_->getData()[count] = backgroundId_; size_t confOffset = n * numPriors_ * numClasses_ + allNegIndices_[n][i] * numClasses_; std::copy(confBufferData + confOffset, confBufferData + confOffset + numClasses_, confProbData + count * numClasses_); confPredData.reserve(confPredData.size() + numClasses_); confPredData.insert(confPredData.end(), confBufferData + confOffset, confBufferData + confOffset + numClasses_); ++count; } } CHECK_EQ(numConf_, count); confProb_->softmax(*confProb_); MatrixPtr confLossOutput; Matrix::resizeOrCreate(confLossOutput, numConf_, 1, false, false); confLossOutput->oneHotCrossEntropy(*confProb_, *confGTData_); confLoss_ = confLossOutput->getSum() / numMatches_; } real loss = locLoss_ + confLoss_; MatrixPtr outV = getOutputValue(); std::vector tmp(batchSize, loss); outV->copyFrom(&tmp[0], batchSize); } void MultiBoxLossLayer::backward(const UpdateCallback& callback) { size_t batchSize = getInputValue(*getLocInputLayer(0))->getHeight(); locBuffer_->zeroMem(); confBuffer_->zeroMem(); // Back propagate on location prediction if (numMatches_ >= 1) { MatrixPtr locDiffBuffer; Matrix::resizeOrCreate(locDiffBuffer, numMatches_ * 4, 1, false, false); locDiffBuffer->smoothL1Bp(*locDiff_, *locGTData_, 0.0); locDiff_->copyFrom(*locDiffBuffer); // scale gradient for (size_t i = 0; i < numMatches_ * 4; ++i) locDiff_->getData()[i] *= (1. / numMatches_); // Copy gradient back size_t count = 0; const real* locDiffData = locDiff_->getData(); for (size_t n = 0; n < batchSize; ++n) { for (size_t i = 0; i < numPriors_; ++i) { if (allMatchIndices_[n][i] == -1) continue; real* locBufferData = locBuffer_->getData() + n * numPriors_ * 4 + i * 4; std::copy(locDiffData + count * 4, locDiffData + (count + 1) * 4, locBufferData); ++count; } } CHECK_EQ(count, numMatches_); } if (numConf_ >= 1) { for (size_t i = 0; i < numConf_; ++i) confProb_->getData()[i * numClasses_ + confGTData_->getData()[i]] -= 1; for (size_t i = 0; i < numConf_ * numClasses_; ++i) confProb_->getData()[i] *= (1. / numMatches_); size_t count = 0; const real* confProbData = confProb_->getData(); for (size_t n = 0; n < batchSize; ++n) { for (size_t i = 0; i < numPriors_; ++i) { if (allMatchIndices_[n][i] == -1) continue; real* confDiffData = confBuffer_->getData() + n * numPriors_ * numClasses_ + i * numClasses_; std::copy(confProbData + count * numClasses_, confProbData + (count + 1) * numClasses_, confDiffData); ++count; } for (size_t i = 0; i < allNegIndices_[n].size(); ++i) { int idx = allNegIndices_[n][i]; real* confDiffData = confBuffer_->getData() + n * numPriors_ * numClasses_ + idx * numClasses_; std::copy(confProbData + count * numClasses_, confProbData + (count + 1) * numClasses_, confDiffData); ++count; } } CHECK_EQ(count, numConf_); } if (useGpu_) { locTmpBuffer_->copyFrom(*locCpuBuffer_); confTmpBuffer_->copyFrom(*confCpuBuffer_); locBuffer_ = locTmpBuffer_; confBuffer_ = confTmpBuffer_; } // copy back size_t locOffset = 0; size_t confOffset = 0; auto layerConf = config_.inputs(0).multibox_loss_conf(); for (size_t n = 0; n < inputNum_; ++n) { const MatrixPtr inLocG = getInputGrad(*getLocInputLayer(n)); const MatrixPtr inConfG = getInputGrad(*getConfInputLayer(n)); size_t height = getInput(*getLocInputLayer(n)).getFrameHeight(); if (!height) height = layerConf.height(); size_t width = getInput(*getLocInputLayer(n)).getFrameWidth(); if (!width) width = layerConf.width(); // NHWC to NCHW MatrixPtr locGBuffer; Matrix::resizeOrCreate( locGBuffer, inLocG->getHeight(), inLocG->getWidth(), false, useGpu_); MatrixPtr confGBuffer; Matrix::resizeOrCreate( confGBuffer, inConfG->getHeight(), inConfG->getWidth(), false, useGpu_); locOffset += decomposeWithPermute(*locBuffer_, height, width, locSizeSum_, locOffset, batchSize, *locGBuffer, kNHWCToNCHW); inLocG->add(*locGBuffer); confOffset += decomposeWithPermute(*confBuffer_, height, width, confSizeSum_, confOffset, batchSize, *confGBuffer, kNHWCToNCHW); inConfG->add(*confGBuffer); } CHECK_EQ(locOffset, locSizeSum_ / batchSize); CHECK_EQ(confOffset, confSizeSum_ / batchSize); } } // namespace paddle