# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import numpy as np from op_test import OpTest class TestSequenceExpand(OpTest): def set_data(self): x_data = np.random.uniform(0.1, 1, [3, 1]).astype('float32') y_data = np.random.uniform(0.1, 1, [8, 1]).astype('float32') y_lod = [[0, 1, 4, 8]] self.inputs = {'X': x_data, 'Y': (y_data, y_lod)} def compute(self): x = self.inputs['X'] x_data, x_lod = x if type(x) == tuple else (x, None) y_data, y_lod = self.inputs['Y'] if hasattr(self, 'attrs'): ref_level = self.attrs['ref_level'] else: ref_level = len(y_lod) - 1 out = np.zeros(shape=((0, ) + x_data.shape[1:]), dtype=x_data.dtype) if x_lod is None: x_idx = [i for i in xrange(x_data.shape[0] + 1)] else: x_idx = x_lod[0] out_lod = [[0]] for i in xrange(1, len(y_lod[ref_level])): repeat_num = y_lod[ref_level][i] - y_lod[ref_level][i - 1] x_len = x_idx[i] - x_idx[i - 1] if repeat_num > 0: x_sub = x_data[x_idx[i - 1]:x_idx[i], :] x_sub = np.repeat(x_sub, repeat_num, axis=0) out = np.vstack((out, x_sub)) if x_lod is not None: for j in xrange(repeat_num): out_lod[0].append(out_lod[0][-1] + x_len) if x_lod is None: self.outputs = {'Out': out} else: self.outputs = {'Out': (out, out_lod)} def setUp(self): self.op_type = 'sequence_expand' self.set_data() self.compute() def test_check_output(self): self.check_output() def test_check_grad(self): self.check_grad(["X"], "Out") class TestSequenceExpandCase1(TestSequenceExpand): def set_data(self): x_data = np.random.uniform(0.1, 1, [5, 1]).astype('float32') x_lod = [[0, 2, 5]] y_data = np.random.uniform(0.1, 1, [13, 1]).astype('float32') y_lod = [[0, 2, 5], [0, 2, 4, 7, 10, 13]] self.inputs = {'X': x_data, 'Y': (y_data, y_lod)} self.attrs = {'ref_level': 0} class TestSequenceExpandCase2(TestSequenceExpand): def set_data(self): x_data = np.random.uniform(0.1, 1, [1, 2, 2]).astype('float32') x_lod = [[0, 1]] y_data = np.random.uniform(0.1, 1, [2, 2, 2]).astype('float32') y_lod = [[0, 2], [0, 2]] self.inputs = {'X': (x_data, x_lod), 'Y': (y_data, y_lod)} self.attrs = {'ref_level': 0} class TestSequenceExpandCase3(TestSequenceExpand): def set_data(self): x_data = np.random.uniform(0.1, 1, [4, 1]).astype('float32') x_lod = [[0, 1, 2, 3, 4]] y_data = np.random.uniform(0.1, 1, [6, 1]).astype('float32') y_lod = [[0, 2, 4, 4, 6]] self.inputs = {'X': (x_data, x_lod), 'Y': (y_data, y_lod)} class TestSequenceExpandCase4(TestSequenceExpand): def set_data(self): data = [0.1, 0.3, 0.2, 0.15, 0.25, 0.2, 0.15, 0.25, 0.1, 0.3] x_data = np.array(data).reshape([5, 2]).astype('float32') x_lod = [[0, 2, 5]] y_data = np.random.uniform(0.1, 1, [2, 1]).astype('float32') y_lod = [[0, 1, 2], [0, 1, 2]] self.inputs = {'X': (x_data, x_lod), 'Y': (y_data, y_lod)} if __name__ == '__main__': unittest.main()