# YOLOX (YOLOX: Exceeding YOLO Series in 2021) ## 内容 - [模型库](#模型库) - [使用说明](#使用说明) - [速度测试](#速度测试) - [引用](#引用) ## 模型库 ### YOLOX on COCO | 网络网络 | 输入尺寸 | 图片数/GPU | 学习率策略 | 模型推理耗时(ms) | Box AP | 下载链接 | 配置文件 | | :------------- | :------- | :-------: | :------: | :---------: | :-----: | :-------------: | :-----: | | YOLOX-nano | 416 | 8 | 300e | 2.3 | 26.1 | [下载链接](https://paddledet.bj.bcebos.com/models/yolox_nano_300e_coco.pdparams) | [配置文件](./yolox_nano_300e_coco.yml) | | YOLOX-tiny | 416 | 8 | 300e | 2.8 | 32.9 | [下载链接](https://paddledet.bj.bcebos.com/models/yolox_tiny_300e_coco.pdparams) | [配置文件](./yolox_tiny_300e_coco.yml) | | YOLOX-s | 640 | 8 | 300e | 3.0 | 40.4 | [下载链接](https://paddledet.bj.bcebos.com/models/yolox_s_300e_coco.pdparams) | [配置文件](./yolox_s_300e_coco.yml) | | YOLOX-m | 640 | 8 | 300e | 5.8 | 46.9 | [下载链接](https://paddledet.bj.bcebos.com/models/yolox_m_300e_coco.pdparams) | [配置文件](./yolox_m_300e_coco.yml) | | YOLOX-l | 640 | 8 | 300e | 9.3 | 50.1 | [下载链接](https://paddledet.bj.bcebos.com/models/yolox_l_300e_coco.pdparams) | [配置文件](./yolox_l_300e_coco.yml) | | YOLOX-x | 640 | 8 | 300e | 16.6 | 51.8 | [下载链接](https://paddledet.bj.bcebos.com/models/yolox_x_300e_coco.pdparams) | [配置文件](./yolox_x_300e_coco.yml) | **注意:** - YOLOX模型训练使用COCO train2017作为训练集,Box AP为在COCO val2017上的`mAP(IoU=0.5:0.95)`结果; - YOLOX模型训练过程中默认使用8 GPUs进行混合精度训练,默认每卡batch_size为8,默认lr为0.01为8卡总batch_size=64的设置,如果**GPU卡数**或者每卡**batch size**发生了改变,你需要按照公式 **lrnew = lrdefault * (batch_sizenew * GPU_numbernew) / (batch_sizedefault * GPU_numberdefault)** 调整学习率; - 为保持高mAP的同时提高推理速度,可以将[yolox_cspdarknet.yml](_base_/yolox_cspdarknet.yml)中的`nms_top_k`修改为`1000`,将`keep_top_k`修改为`100`,将`score_threshold`修改为`0.01`,mAP会下降约0.1~0.2%; - 为快速的demo演示效果,可以将[yolox_cspdarknet.yml](_base_/yolox_cspdarknet.yml)中的`score_threshold`修改为`0.25`,将`nms_threshold`修改为`0.45`,但mAP会下降较多; - YOLOX模型推理速度测试采用单卡V100,batch size=1进行测试,使用**CUDA 10.2**, **CUDNN 7.6.5**,TensorRT推理速度测试使用**TensorRT 6.0.1.8**。 - 参考[速度测试](#速度测试)以复现YOLOX推理速度测试结果,速度为tensorRT-FP16测速后的最快速度,不包含数据预处理和模型输出后处理(NMS)的耗时。 - 如果你设置了`--run_benchmark=True`, 你首先需要安装以下依赖`pip install pynvml psutil GPUtil`。 ## 使用教程 ### 1.训练 执行以下指令使用混合精度训练YOLOX ```bash python -m paddle.distributed.launch --gpus 0,1,2,3,4,5,6,7 tools/train.py -c configs/yolox/yolox_s_300e_coco.yml --amp --eval ``` **注意:** - `--amp`表示开启混合精度训练以避免显存溢出,`--eval`表示边训边验证。 ### 2.评估 执行以下命令在单个GPU上评估COCO val2017数据集 ```bash CUDA_VISIBLE_DEVICES=0 python tools/eval.py -c configs/yolox/yolox_s_300e_coco.yml -o weights=https://paddledet.bj.bcebos.com/models/yolox_s_300e_coco.pdparams ``` ### 3.推理 使用以下命令在单张GPU上预测图片,使用`--infer_img`推理单张图片以及使用`--infer_dir`推理文件中的所有图片。 ```bash # 推理单张图片 CUDA_VISIBLE_DEVICES=0 python tools/infer.py -c configs/yolox/yolox_s_300e_coco.yml -o weights=https://paddledet.bj.bcebos.com/models/yolox_s_300e_coco.pdparams --infer_img=demo/000000014439_640x640.jpg # 推理文件中的所有图片 CUDA_VISIBLE_DEVICES=0 python tools/infer.py -c configs/yolox/yolox_s_300e_coco.yml -o weights=https://paddledet.bj.bcebos.com/models/yolox_s_300e_coco.pdparams --infer_dir=demo ``` ### 4.导出模型 YOLOX在GPU上推理部署或benchmark测速等需要通过`tools/export_model.py`导出模型。 当你**使用Paddle Inference但不使用TensorRT**时,运行以下的命令导出模型 ```bash python tools/export_model.py -c configs/yolox/yolox_s_300e_coco.yml -o weights=https://paddledet.bj.bcebos.com/models/yolox_s_300e_coco.pdparams ``` 当你**使用Paddle Inference且使用TensorRT**时,需要指定`-o trt=True`来导出模型。 ```bash python tools/export_model.py -c configs/yolox/yolox_s_300e_coco.yml -o weights=https://paddledet.bj.bcebos.com/models/yolox_s_300e_coco.pdparams trt=True ``` 如果你想将YOLOX模型导出为**ONNX格式**,参考 [PaddleDetection模型导出为ONNX格式教程](../../deploy/EXPORT_ONNX_MODEL.md),运行以下命令: ```bash # 导出推理模型 python tools/export_model.py -c configs/yolox/yolox_s_300e_coco.yml --output_dir=output_inference -o weights=https://paddledet.bj.bcebos.com/models/yolox_s_300e_coco.pdparams # 安装paddle2onnx pip install paddle2onnx # 转换成onnx格式 paddle2onnx --model_dir output_inference/yolox_s_300e_coco --model_filename model.pdmodel --params_filename model.pdiparams --opset_version 11 --save_file yolox_s_300e_coco.onnx ``` **注意:** ONNX模型目前只支持batch_size=1 ### 5.推理部署 YOLOX可以使用以下方式进行部署: - Paddle Inference [Python](../../deploy/python) & [C++](../../deploy/cpp) - [Paddle-TensorRT](../../deploy/TENSOR_RT.md) - [PaddleServing](https://github.com/PaddlePaddle/Serving) - [PaddleSlim模型量化](../slim) 运行以下命令导出模型 ```bash python tools/export_model.py -c configs/yolox/yolox_s_300e_coco.yml -o weights=https://paddledet.bj.bcebos.com/models/yolox_s_300e_coco.pdparams trt=True ``` **注意:** - trt=True表示**使用Paddle Inference且使用TensorRT**进行测速,速度会更快,默认不加即为False,表示**使用Paddle Inference但不使用TensorRT**进行测速。 - 如果是使用Paddle Inference在TensorRT FP16模式下部署,需要参考[Paddle Inference文档](https://www.paddlepaddle.org.cn/inference/master/user_guides/download_lib.html#python),下载并安装与你的CUDA, CUDNN和TensorRT相应的wheel包。 #### 5.1.Python部署 `deploy/python/infer.py`使用上述导出后的Paddle Inference模型用于推理和benchnark测速,如果设置了`--run_benchmark=True`, 首先需要安装以下依赖`pip install pynvml psutil GPUtil`。 ```bash # Python部署推理单张图片 python deploy/python/infer.py --model_dir=output_inference/yolox_s_300e_coco --image_file=demo/000000014439_640x640.jpg --device=gpu # 推理文件夹下的所有图片 python deploy/python/infer.py --model_dir=output_inference/yolox_s_300e_coco --image_dir=demo/ --device=gpu ``` #### 5.2. C++部署 `deploy/cpp/build/main`使用上述导出后的Paddle Inference模型用于C++推理部署, 首先按照[docs](../../deploy/cpp/docs)编译安装环境。 ```bash # C++部署推理单张图片 ./deploy/cpp/build/main --model_dir=output_inference/yolox_s_300e_coco/ --image_file=demo/000000014439_640x640.jpg --run_mode=paddle --device=GPU --threshold=0.5 --output_dir=cpp_infer_output/yolox_s_300e_coco ``` ## 速度测试 为了公平起见,在[模型库](#模型库)中的速度测试结果均为不包含数据预处理和模型输出后处理(NMS)的数据(与[YOLOv4(AlexyAB)](https://github.com/AlexeyAB/darknet)测试方法一致),需要在导出模型时指定`-o exclude_nms=True`。测速需设置`--run_benchmark=True`, 首先需要安装以下依赖`pip install pynvml psutil GPUtil`。 **使用Paddle Inference但不使用TensorRT**进行测速,执行以下命令: ```bash # 导出模型 python tools/export_model.py -c configs/yolox/yolox_s_300e_coco.yml -o weights=https://paddledet.bj.bcebos.com/models/yolox_s_300e_coco.pdparams exclude_nms=True # 速度测试,使用run_benchmark=True python deploy/python/infer.py --model_dir=output_inference/yolox_s_300e_coco --image_file=demo/000000014439_640x640.jpg --run_mode=paddle --device=gpu --run_benchmark=True ``` **使用Paddle Inference且使用TensorRT**进行测速,执行以下命令: ```bash # 导出模型,使用trt=True python tools/export_model.py -c configs/yolox/yolox_s_300e_coco.yml -o weights=https://paddledet.bj.bcebos.com/models/yolox_s_300e_coco.pdparams exclude_nms=True trt=True # 速度测试,使用run_benchmark=True python deploy/python/infer.py --model_dir=output_inference/yolox_s_300e_coco --image_file=demo/000000014439_640x640.jpg --device=gpu --run_benchmark=True # tensorRT-FP32测速 python deploy/python/infer.py --model_dir=output_inference/yolox_s_300e_coco --image_file=demo/000000014439_640x640.jpg --device=gpu --run_benchmark=True --trt_max_shape=640 --trt_min_shape=640 --trt_opt_shape=640 --run_mode=trt_fp32 # tensorRT-FP16测速 python deploy/python/infer.py --model_dir=output_inference/yolox_s_300e_coco --image_file=demo/000000014439_640x640.jpg --device=gpu --run_benchmark=True --trt_max_shape=640 --trt_min_shape=640 --trt_opt_shape=640 --run_mode=trt_fp16 ``` **注意:** - 导出模型时指定`-o exclude_nms=True`仅作为测速时用,这样导出的模型其推理部署预测的结果不是最终检出框的结果。 - [模型库](#模型库)中的速度测试结果为tensorRT-FP16测速后的最快速度,为不包含数据预处理和模型输出后处理(NMS)的耗时。 ## Citations ``` @article{yolox2021, title={YOLOX: Exceeding YOLO Series in 2021}, author={Ge, Zheng and Liu, Songtao and Wang, Feng and Li, Zeming and Sun, Jian}, journal={arXiv preprint arXiv:2107.08430}, year={2021} } ```