_BASE_: [ '../datasets/coco_detection.yml', '../runtime.yml', './_base_/optimizer_36e_xpu.yml', './_base_/ppyoloe_reader.yml', ] # note: these are default values (use_gpu = true and use_xpu = false) for CI. # set use_gpu = false and use_xpu = true for training. use_gpu: true use_xpu: false log_iter: 100 snapshot_epoch: 1 weights: output/ppyoloe_crn_l_36e_coco/model_final find_unused_parameters: True pretrain_weights: https://paddledet.bj.bcebos.com/models/pretrained/CSPResNetb_l_pretrained.pdparams depth_mult: 1.0 width_mult: 1.0 TrainReader: batch_size: 8 architecture: YOLOv3 norm_type: sync_bn use_ema: true ema_decay: 0.9998 YOLOv3: backbone: CSPResNet neck: CustomCSPPAN yolo_head: PPYOLOEHead post_process: ~ CSPResNet: layers: [3, 6, 6, 3] channels: [64, 128, 256, 512, 1024] return_idx: [1, 2, 3] use_large_stem: True CustomCSPPAN: out_channels: [768, 384, 192] stage_num: 1 block_num: 3 act: 'swish' spp: true PPYOLOEHead: fpn_strides: [32, 16, 8] grid_cell_scale: 5.0 grid_cell_offset: 0.5 static_assigner_epoch: 4 use_varifocal_loss: True loss_weight: {class: 1.0, iou: 2.5, dfl: 0.5} static_assigner: name: ATSSAssigner topk: 9 assigner: name: TaskAlignedAssigner topk: 13 alpha: 1.0 beta: 6.0 nms: name: MultiClassNMS nms_top_k: 1000 keep_top_k: 100 score_threshold: 0.01 nms_threshold: 0.6