# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import cv2 import numpy as np import json import copy import pycocotools from pycocotools.coco import COCO from .dataset import DetDataset from ppdet.core.workspace import register, serializable @serializable class KeypointBottomUpBaseDataset(DetDataset): """Base class for bottom-up datasets. Adapted from https://github.com/open-mmlab/mmpose All datasets should subclass it. All subclasses should overwrite: Methods:`_get_imganno` Args: dataset_dir (str): Root path to the dataset. anno_path (str): Relative path to the annotation file. image_dir (str): Path to a directory where images are held. Default: None. num_joints (int): keypoint numbers transform (composed(operators)): A sequence of data transforms. shard (list): [rank, worldsize], the distributed env params test_mode (bool): Store True when building test or validation dataset. Default: False. """ def __init__(self, dataset_dir, image_dir, anno_path, num_joints, transform=[], shard=[0, 1], test_mode=False): super().__init__(dataset_dir, image_dir, anno_path) self.image_info = {} self.ann_info = {} self.img_prefix = os.path.join(dataset_dir, image_dir) self.transform = transform self.test_mode = test_mode self.ann_info['num_joints'] = num_joints self.img_ids = [] def __len__(self): """Get dataset length.""" return len(self.img_ids) def _get_imganno(self, idx): """Get anno for a single image.""" raise NotImplementedError def __getitem__(self, idx): """Prepare image for training given the index.""" records = copy.deepcopy(self._get_imganno(idx)) records['image'] = cv2.imread(records['image_file']) records['image'] = cv2.cvtColor(records['image'], cv2.COLOR_BGR2RGB) records['mask'] = (records['mask'] + 0).astype('uint8') records = self.transform(records) return records def parse_dataset(self): return @register @serializable class KeypointBottomUpCocoDataset(KeypointBottomUpBaseDataset): """COCO dataset for bottom-up pose estimation. Adapted from https://github.com/open-mmlab/mmpose The dataset loads raw features and apply specified transforms to return a dict containing the image tensors and other information. COCO keypoint indexes:: 0: 'nose', 1: 'left_eye', 2: 'right_eye', 3: 'left_ear', 4: 'right_ear', 5: 'left_shoulder', 6: 'right_shoulder', 7: 'left_elbow', 8: 'right_elbow', 9: 'left_wrist', 10: 'right_wrist', 11: 'left_hip', 12: 'right_hip', 13: 'left_knee', 14: 'right_knee', 15: 'left_ankle', 16: 'right_ankle' Args: dataset_dir (str): Root path to the dataset. anno_path (str): Relative path to the annotation file. image_dir (str): Path to a directory where images are held. Default: None. num_joints (int): keypoint numbers transform (composed(operators)): A sequence of data transforms. shard (list): [rank, worldsize], the distributed env params test_mode (bool): Store True when building test or validation dataset. Default: False. """ def __init__(self, dataset_dir, image_dir, anno_path, num_joints, transform=[], shard=[0, 1], test_mode=False): super().__init__(dataset_dir, image_dir, anno_path, num_joints, transform, shard, test_mode) ann_file = os.path.join(dataset_dir, anno_path) self.coco = COCO(ann_file) self.img_ids = self.coco.getImgIds() if not test_mode: self.img_ids = [ img_id for img_id in self.img_ids if len(self.coco.getAnnIds( imgIds=img_id, iscrowd=None)) > 0 ] blocknum = int(len(self.img_ids) / shard[1]) self.img_ids = self.img_ids[(blocknum * shard[0]):(blocknum * (shard[0] + 1))] self.num_images = len(self.img_ids) self.id2name, self.name2id = self._get_mapping_id_name(self.coco.imgs) self.dataset_name = 'coco' cat_ids = self.coco.getCatIds() self.catid2clsid = dict({catid: i for i, catid in enumerate(cat_ids)}) print(f'=> num_images: {self.num_images}') @staticmethod def _get_mapping_id_name(imgs): """ Args: imgs (dict): dict of image info. Returns: tuple: Image name & id mapping dicts. - id2name (dict): Mapping image id to name. - name2id (dict): Mapping image name to id. """ id2name = {} name2id = {} for image_id, image in imgs.items(): file_name = image['file_name'] id2name[image_id] = file_name name2id[file_name] = image_id return id2name, name2id def _get_imganno(self, idx): """Get anno for a single image. Args: idx (int): image idx Returns: dict: info for model training """ coco = self.coco img_id = self.img_ids[idx] ann_ids = coco.getAnnIds(imgIds=img_id) anno = coco.loadAnns(ann_ids) mask = self._get_mask(anno, idx) anno = [ obj for obj in anno if obj['iscrowd'] == 0 or obj['num_keypoints'] > 0 ] joints, orgsize = self._get_joints(anno, idx) db_rec = {} db_rec['im_id'] = img_id db_rec['image_file'] = os.path.join(self.img_prefix, self.id2name[img_id]) db_rec['mask'] = mask db_rec['joints'] = joints db_rec['im_shape'] = orgsize return db_rec def _get_joints(self, anno, idx): """Get joints for all people in an image.""" num_people = len(anno) joints = np.zeros( (num_people, self.ann_info['num_joints'], 3), dtype=np.float32) for i, obj in enumerate(anno): joints[i, :self.ann_info['num_joints'], :3] = \ np.array(obj['keypoints']).reshape([-1, 3]) img_info = self.coco.loadImgs(self.img_ids[idx])[0] joints[..., 0] /= img_info['width'] joints[..., 1] /= img_info['height'] orgsize = np.array([img_info['height'], img_info['width']]) return joints, orgsize def _get_mask(self, anno, idx): """Get ignore masks to mask out losses.""" coco = self.coco img_info = coco.loadImgs(self.img_ids[idx])[0] m = np.zeros((img_info['height'], img_info['width']), dtype=np.float32) for obj in anno: if 'segmentation' in obj: if obj['iscrowd']: rle = pycocotools.mask.frPyObjects(obj['segmentation'], img_info['height'], img_info['width']) m += pycocotools.mask.decode(rle) elif obj['num_keypoints'] == 0: rles = pycocotools.mask.frPyObjects(obj['segmentation'], img_info['height'], img_info['width']) for rle in rles: m += pycocotools.mask.decode(rle) return m < 0.5 @register @serializable class KeypointBottomUpCrowdPoseDataset(KeypointBottomUpCocoDataset): """CrowdPose dataset for bottom-up pose estimation. Adapted from https://github.com/open-mmlab/mmpose The dataset loads raw features and apply specified transforms to return a dict containing the image tensors and other information. CrowdPose keypoint indexes:: 0: 'left_shoulder', 1: 'right_shoulder', 2: 'left_elbow', 3: 'right_elbow', 4: 'left_wrist', 5: 'right_wrist', 6: 'left_hip', 7: 'right_hip', 8: 'left_knee', 9: 'right_knee', 10: 'left_ankle', 11: 'right_ankle', 12: 'top_head', 13: 'neck' Args: dataset_dir (str): Root path to the dataset. anno_path (str): Relative path to the annotation file. image_dir (str): Path to a directory where images are held. Default: None. num_joints (int): keypoint numbers transform (composed(operators)): A sequence of data transforms. shard (list): [rank, worldsize], the distributed env params test_mode (bool): Store True when building test or validation dataset. Default: False. """ def __init__(self, dataset_dir, image_dir, anno_path, num_joints, transform=[], shard=[0, 1], test_mode=False): super().__init__(dataset_dir, image_dir, anno_path, num_joints, transform, shard, test_mode) ann_file = os.path.join(dataset_dir, anno_path) self.coco = COCO(ann_file) self.img_ids = self.coco.getImgIds() if not test_mode: self.img_ids = [ img_id for img_id in self.img_ids if len(self.coco.getAnnIds( imgIds=img_id, iscrowd=None)) > 0 ] blocknum = int(len(self.img_ids) / shard[1]) self.img_ids = self.img_ids[(blocknum * shard[0]):(blocknum * (shard[0] + 1))] self.num_images = len(self.img_ids) self.id2name, self.name2id = self._get_mapping_id_name(self.coco.imgs) self.dataset_name = 'crowdpose' print('=> num_images: {}'.format(self.num_images)) @serializable class KeypointTopDownBaseDataset(DetDataset): """Base class for top_down datasets. All datasets should subclass it. All subclasses should overwrite: Methods:`_get_db` Args: dataset_dir (str): Root path to the dataset. image_dir (str): Path to a directory where images are held. anno_path (str): Relative path to the annotation file. num_joints (int): keypoint numbers transform (composed(operators)): A sequence of data transforms. """ def __init__(self, dataset_dir, image_dir, anno_path, num_joints, transform=[]): super().__init__(dataset_dir, image_dir, anno_path) self.image_info = {} self.ann_info = {} self.img_prefix = os.path.join(dataset_dir, image_dir) self.transform = transform self.ann_info['num_joints'] = num_joints self.db = [] def __len__(self): """Get dataset length.""" return len(self.db) def _get_db(self): """Get a sample""" raise NotImplementedError def __getitem__(self, idx): """Prepare sample for training given the index.""" records = copy.deepcopy(self.db[idx]) records['image'] = cv2.imread(records['image_file'], cv2.IMREAD_COLOR | cv2.IMREAD_IGNORE_ORIENTATION) records['image'] = cv2.cvtColor(records['image'], cv2.COLOR_BGR2RGB) records['score'] = records['score'] if 'score' in records else 1 records = self.transform(records) # print('records', records) return records @register @serializable class KeypointTopDownCocoDataset(KeypointTopDownBaseDataset): """COCO dataset for top-down pose estimation. Adapted from https://github.com/leoxiaobin/deep-high-resolution-net.pytorch Copyright (c) Microsoft, under the MIT License. The dataset loads raw features and apply specified transforms to return a dict containing the image tensors and other information. COCO keypoint indexes: 0: 'nose', 1: 'left_eye', 2: 'right_eye', 3: 'left_ear', 4: 'right_ear', 5: 'left_shoulder', 6: 'right_shoulder', 7: 'left_elbow', 8: 'right_elbow', 9: 'left_wrist', 10: 'right_wrist', 11: 'left_hip', 12: 'right_hip', 13: 'left_knee', 14: 'right_knee', 15: 'left_ankle', 16: 'right_ankle' Args: dataset_dir (str): Root path to the dataset. image_dir (str): Path to a directory where images are held. anno_path (str): Relative path to the annotation file. num_joints (int): Keypoint numbers trainsize (list):[w, h] Image target size transform (composed(operators)): A sequence of data transforms. bbox_file (str): Path to a detection bbox file Default: None. use_gt_bbox (bool): Whether to use ground truth bbox Default: True. pixel_std (int): The pixel std of the scale Default: 200. image_thre (float): The threshold to filter the detection box Default: 0.0. """ def __init__(self, dataset_dir, image_dir, anno_path, num_joints, trainsize, transform=[], bbox_file=None, use_gt_bbox=True, pixel_std=200, image_thre=0.0): super().__init__(dataset_dir, image_dir, anno_path, num_joints, transform) self.bbox_file = bbox_file self.use_gt_bbox = use_gt_bbox self.trainsize = trainsize self.pixel_std = pixel_std self.image_thre = image_thre self.dataset_name = 'coco' def parse_dataset(self): if self.use_gt_bbox: self.db = self._load_coco_keypoint_annotations() else: self.db = self._load_coco_person_detection_results() def _load_coco_keypoint_annotations(self): coco = COCO(self.get_anno()) img_ids = coco.getImgIds() gt_db = [] for index in img_ids: im_ann = coco.loadImgs(index)[0] width = im_ann['width'] height = im_ann['height'] file_name = im_ann['file_name'] im_id = int(im_ann["id"]) annIds = coco.getAnnIds(imgIds=index, iscrowd=False) objs = coco.loadAnns(annIds) valid_objs = [] for obj in objs: x, y, w, h = obj['bbox'] x1 = np.max((0, x)) y1 = np.max((0, y)) x2 = np.min((width - 1, x1 + np.max((0, w - 1)))) y2 = np.min((height - 1, y1 + np.max((0, h - 1)))) if obj['area'] > 0 and x2 >= x1 and y2 >= y1: obj['clean_bbox'] = [x1, y1, x2 - x1, y2 - y1] valid_objs.append(obj) objs = valid_objs rec = [] for obj in objs: if max(obj['keypoints']) == 0: continue joints = np.zeros( (self.ann_info['num_joints'], 3), dtype=np.float) joints_vis = np.zeros( (self.ann_info['num_joints'], 3), dtype=np.float) for ipt in range(self.ann_info['num_joints']): joints[ipt, 0] = obj['keypoints'][ipt * 3 + 0] joints[ipt, 1] = obj['keypoints'][ipt * 3 + 1] joints[ipt, 2] = 0 t_vis = obj['keypoints'][ipt * 3 + 2] if t_vis > 1: t_vis = 1 joints_vis[ipt, 0] = t_vis joints_vis[ipt, 1] = t_vis joints_vis[ipt, 2] = 0 center, scale = self._box2cs(obj['clean_bbox'][:4]) rec.append({ 'image_file': os.path.join(self.img_prefix, file_name), 'center': center, 'scale': scale, 'joints': joints, 'joints_vis': joints_vis, 'im_id': im_id, }) gt_db.extend(rec) return gt_db def _box2cs(self, box): x, y, w, h = box[:4] center = np.zeros((2), dtype=np.float32) center[0] = x + w * 0.5 center[1] = y + h * 0.5 aspect_ratio = self.trainsize[0] * 1.0 / self.trainsize[1] if w > aspect_ratio * h: h = w * 1.0 / aspect_ratio elif w < aspect_ratio * h: w = h * aspect_ratio scale = np.array( [w * 1.0 / self.pixel_std, h * 1.0 / self.pixel_std], dtype=np.float32) if center[0] != -1: scale = scale * 1.25 return center, scale def _load_coco_person_detection_results(self): all_boxes = None bbox_file_path = os.path.join(self.dataset_dir, self.bbox_file) with open(bbox_file_path, 'r') as f: all_boxes = json.load(f) if not all_boxes: print('=> Load %s fail!' % bbox_file_path) return None kpt_db = [] for n_img in range(0, len(all_boxes)): det_res = all_boxes[n_img] if det_res['category_id'] != 1: continue file_name = det_res[ 'filename'] if 'filename' in det_res else '%012d.jpg' % det_res[ 'image_id'] img_name = os.path.join(self.img_prefix, file_name) box = det_res['bbox'] score = det_res['score'] im_id = int(det_res['image_id']) if score < self.image_thre: continue center, scale = self._box2cs(box) joints = np.zeros((self.ann_info['num_joints'], 3), dtype=np.float) joints_vis = np.ones( (self.ann_info['num_joints'], 3), dtype=np.float) kpt_db.append({ 'image_file': img_name, 'im_id': im_id, 'center': center, 'scale': scale, 'score': score, 'joints': joints, 'joints_vis': joints_vis, }) return kpt_db @register @serializable class KeypointTopDownMPIIDataset(KeypointTopDownBaseDataset): """MPII dataset for topdown pose estimation. Adapted from https://github.com/leoxiaobin/deep-high-resolution-net.pytorch Copyright (c) Microsoft, under the MIT License. The dataset loads raw features and apply specified transforms to return a dict containing the image tensors and other information. MPII keypoint indexes:: 0: 'right_ankle', 1: 'right_knee', 2: 'right_hip', 3: 'left_hip', 4: 'left_knee', 5: 'left_ankle', 6: 'pelvis', 7: 'thorax', 8: 'upper_neck', 9: 'head_top', 10: 'right_wrist', 11: 'right_elbow', 12: 'right_shoulder', 13: 'left_shoulder', 14: 'left_elbow', 15: 'left_wrist', Args: dataset_dir (str): Root path to the dataset. image_dir (str): Path to a directory where images are held. anno_path (str): Relative path to the annotation file. num_joints (int): Keypoint numbers trainsize (list):[w, h] Image target size transform (composed(operators)): A sequence of data transforms. """ def __init__(self, dataset_dir, image_dir, anno_path, num_joints, transform=[]): super().__init__(dataset_dir, image_dir, anno_path, num_joints, transform) self.dataset_name = 'mpii' def parse_dataset(self): with open(self.get_anno()) as anno_file: anno = json.load(anno_file) gt_db = [] for a in anno: image_name = a['image'] im_id = a['image_id'] if 'image_id' in a else int( os.path.splitext(image_name)[0]) c = np.array(a['center'], dtype=np.float) s = np.array([a['scale'], a['scale']], dtype=np.float) # Adjust center/scale slightly to avoid cropping limbs if c[0] != -1: c[1] = c[1] + 15 * s[1] s = s * 1.25 c = c - 1 joints = np.zeros((self.ann_info['num_joints'], 3), dtype=np.float) joints_vis = np.zeros( (self.ann_info['num_joints'], 3), dtype=np.float) if 'joints' in a: joints_ = np.array(a['joints']) joints_[:, 0:2] = joints_[:, 0:2] - 1 joints_vis_ = np.array(a['joints_vis']) assert len(joints_) == self.ann_info[ 'num_joints'], 'joint num diff: {} vs {}'.format( len(joints_), self.ann_info['num_joints']) joints[:, 0:2] = joints_[:, 0:2] joints_vis[:, 0] = joints_vis_[:] joints_vis[:, 1] = joints_vis_[:] gt_db.append({ 'image_file': os.path.join(self.img_prefix, image_name), 'im_id': im_id, 'center': c, 'scale': s, 'joints': joints, 'joints_vis': joints_vis }) print("number length: {}".format(len(gt_db))) self.db = gt_db