architecture: FasterRCNN max_iters: 11000 snapshot_iter: 1000 use_gpu: true log_smooth_window: 20 save_dir: output pretrain_weights: https://paddle-imagenet-models-name.bj.bcebos.com/ResNet50_vd_ssld_pretrained.tar weights: output/faster_rcnn_r50_vd_fpn_2x/model_final metric: COCO num_classes: 7 FasterRCNN: backbone: ResNet fpn: FPN rpn_head: FPNRPNHead roi_extractor: FPNRoIAlign bbox_head: BBoxHead bbox_assigner: BBoxAssigner ResNet: depth: 50 feature_maps: [2, 3, 4, 5] freeze_at: 2 norm_type: bn variant: d FPN: max_level: 6 min_level: 2 num_chan: 256 spatial_scale: [0.03125, 0.0625, 0.125, 0.25] FPNRPNHead: anchor_generator: anchor_sizes: [8, 16, 32, 64, 128] aspect_ratios: [0.5, 1.0, 2.0] stride: [16.0, 16.0] variance: [1.0, 1.0, 1.0, 1.0] anchor_start_size: 8 max_level: 6 min_level: 2 num_chan: 256 rpn_target_assign: rpn_batch_size_per_im: 256 rpn_fg_fraction: 0.5 rpn_negative_overlap: 0.3 rpn_positive_overlap: 0.7 rpn_straddle_thresh: 0.0 train_proposal: min_size: 0.0 nms_thresh: 0.7 post_nms_top_n: 2000 pre_nms_top_n: 2000 test_proposal: min_size: 0.0 nms_thresh: 0.7 post_nms_top_n: 1000 pre_nms_top_n: 1000 FPNRoIAlign: canconical_level: 4 canonical_size: 224 max_level: 5 min_level: 2 box_resolution: 7 sampling_ratio: 2 BBoxAssigner: batch_size_per_im: 512 bbox_reg_weights: [0.1, 0.1, 0.2, 0.2] bg_thresh_hi: 0.5 bg_thresh_lo: 0.0 fg_fraction: 0.25 fg_thresh: 0.5 BBoxHead: head: TwoFCHead nms: keep_top_k: 100 nms_threshold: 0.5 score_threshold: 0.05 TwoFCHead: mlp_dim: 1024 LearningRate: base_lr: 0.0025 schedulers: - !PiecewiseDecay gamma: 0.1 milestones: [7122, 9800] - !LinearWarmup start_factor: 0.333 steps: 500 OptimizerBuilder: optimizer: momentum: 0.9 type: Momentum regularizer: factor: 0.0001 type: L2 TrainReader: inputs_def: fields: ['image', 'im_info', 'im_id', 'gt_bbox', 'gt_class', 'is_crowd'] dataset: !COCODataSet image_dir: images anno_path: Annotations/train.json dataset_dir: /home/aistudio/work/PCB_DATASET sample_transforms: - !DecodeImage to_rgb: true - !RandomFlipImage prob: 0.5 - !NormalizeImage is_channel_first: false is_scale: true mean: [0.485,0.456,0.406] std: [0.229, 0.224,0.225] - !ResizeImage target_size: 800 max_size: 1333 interp: 1 use_cv2: true - !Permute to_bgr: false channel_first: true batch_transforms: - !PadBatch pad_to_stride: 32 use_padded_im_info: false batch_size: 2 shuffle: true worker_num: 2 use_process: false EvalReader: inputs_def: fields: ['image', 'im_info', 'im_id', 'im_shape'] dataset: !COCODataSet image_dir: images anno_path: Annotations/val.json dataset_dir: /home/aistudio/work/PCB_DATASET sample_transforms: - !DecodeImage to_rgb: true with_mixup: false - !NormalizeImage is_channel_first: false is_scale: true mean: [0.485,0.456,0.406] std: [0.229, 0.224,0.225] - !ResizeImage interp: 1 max_size: 1333 target_size: 800 use_cv2: true - !Permute channel_first: true to_bgr: false batch_transforms: - !PadBatch pad_to_stride: 32 use_padded_im_info: true batch_size: 1 shuffle: false drop_empty: false worker_num: 2 TestReader: inputs_def: # set image_shape if needed fields: ['image', 'im_info', 'im_id', 'im_shape'] dataset: !ImageFolder anno_path: /home/aistudio/work/PCB_DATASET/Annotations/val.json sample_transforms: - !DecodeImage to_rgb: true with_mixup: false - !NormalizeImage is_channel_first: false is_scale: true mean: [0.485,0.456,0.406] std: [0.229, 0.224,0.225] - !ResizeImage interp: 1 max_size: 1333 target_size: 800 use_cv2: true - !Permute channel_first: true to_bgr: false batch_transforms: - !PadBatch pad_to_stride: 32 use_padded_im_info: true batch_size: 1 shuffle: false