/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #include "paddle/fluid/platform/device_context.h" #include #include #include #include #include "paddle/fluid/memory/memory.h" #ifdef PADDLE_WITH_CUDA #include "paddle/fluid/framework/rw_lock.h" #include "paddle/fluid/platform/cuda_device_guard.h" #endif namespace paddle { namespace platform { DeviceContextPool* DeviceContextPool::pool = nullptr; platform::DeviceContext* DeviceContextPool::Get(const platform::Place& place) { auto it = device_contexts_.find(place); if (it == device_contexts_.end()) { PADDLE_THROW( "Place %s is not supported, Please re-compile with WITH_GPU " "option", place); } return it->second.get().get(); } template inline void EmplaceDeviceContext( std::map>>* map_ptr, platform::Place p) { using PtrType = std::unique_ptr; map_ptr->emplace(p, std::async(std::launch::deferred, [=] { // lazy evaluation. i.e., only create device context at // first `Get` return PtrType(new DevCtx(boost::get(p))); })); } DeviceContextPool::DeviceContextPool( const std::vector& places) { PADDLE_ENFORCE_GT(places.size(), 0); std::set set; for (auto& p : places) { set.insert(p); } for (auto& p : set) { if (platform::is_cpu_place(p)) { #ifdef PADDLE_WITH_MKLDNN EmplaceDeviceContext(&device_contexts_, p); #else EmplaceDeviceContext(&device_contexts_, p); #endif } else if (platform::is_gpu_place(p)) { #ifdef PADDLE_WITH_CUDA EmplaceDeviceContext(&device_contexts_, p); #else PADDLE_THROW( "'CUDAPlace' is not supported, Please re-compile with WITH_GPU " "option"); #endif } else if (platform::is_cuda_pinned_place(p)) { #ifdef PADDLE_WITH_CUDA EmplaceDeviceContext( &device_contexts_, p); #else PADDLE_THROW( "'CUDAPlace' is not supported, Please re-compile with WITH_GPU " "option"); #endif } } } DeviceTemporaryAllocator* DeviceTemporaryAllocator::allocators = nullptr; #ifdef PADDLE_WITH_CUDA platform::TemporaryAllocator& DeviceTemporaryAllocator::Get( const platform::Place& place, const cudaStream_t& stream) { PADDLE_ENFORCE(platform::is_gpu_place(place)); auto place_stream = std::make_pair(place, stream); std::unique_lock lock(mtx_); auto it = device_allocator_.find(place_stream); if (it == device_allocator_.end()) { auto tmp_allocator = new TemporaryAllocator(place); tmp_allocator->SetCallback([stream]() { PADDLE_ENFORCE(cudaStreamSynchronize(stream)); PADDLE_ENFORCE(cudaGetLastError()); }); device_allocator_[place_stream].reset(tmp_allocator); return *tmp_allocator; } else { return *it->second; } } template <> platform::TemporaryAllocator& DeviceTemporaryAllocator::Get( const platform::CUDADeviceContext& dev_ctx) { return Get(dev_ctx.GetPlace(), dev_ctx.stream()); } #endif template <> platform::TemporaryAllocator& DeviceTemporaryAllocator::Get( const platform::CPUDeviceContext& dev_ctx) { return cpu_allocator_; } platform::TemporaryAllocator& DeviceTemporaryAllocator::Get( const platform::Place& place) { PADDLE_ENFORCE(platform::is_cpu_place(place), "You should pass CPUPlace"); return cpu_allocator_; } CPUDeviceContext::CPUDeviceContext() { eigen_device_.reset(new Eigen::DefaultDevice()); } CPUDeviceContext::CPUDeviceContext(CPUPlace place) : place_(place) { eigen_device_.reset(new Eigen::DefaultDevice()); } Eigen::DefaultDevice* CPUDeviceContext::eigen_device() const { return eigen_device_.get(); } Place CPUDeviceContext::GetPlace() const { return place_; } #ifdef PADDLE_WITH_CUDA class EigenCudaStreamDevice : public Eigen::StreamInterface { public: EigenCudaStreamDevice() : scratch_(nullptr), semaphore_(nullptr) { Eigen::initializeDeviceProp(); } ~EigenCudaStreamDevice() override {} void Reinitialize(const cudaStream_t* cuda_stream, CUDAPlace place) { stream_ = cuda_stream; place_ = place; device_prop_ = &Eigen::m_deviceProperties[place.device]; } const cudaStream_t& stream() const override { return *stream_; } const cudaDeviceProp& deviceProperties() const override { return *device_prop_; } void* allocate(size_t num_bytes) const override { if (UNLIKELY(num_bytes == 0)) { return nullptr; } auto buf = paddle::memory::Alloc(place_, num_bytes, memory::Allocator::kScratchpad); void* retv = buf->ptr(); { std::lock_guard lock(mtx_); allocations_.emplace(retv, std::move(buf)); } return retv; } void deallocate(void* buffer) const override { if (LIKELY(buffer)) { std::lock_guard lock(mtx_); allocations_.erase(buffer); } } void* scratchpad() const override { if (scratch_ == NULL) { scratch_ = allocate(Eigen::kCudaScratchSize + sizeof(unsigned int)); } return scratch_; } unsigned int* semaphore() const override { if (semaphore_ == NULL) { char* scratch = static_cast(scratchpad()) + Eigen::kCudaScratchSize; semaphore_ = reinterpret_cast(scratch); PADDLE_ENFORCE( cudaMemsetAsync(semaphore_, 0, sizeof(unsigned int), *stream_)); } return semaphore_; } private: CUDAPlace place_; const cudaStream_t* stream_; // not owned; const cudaDeviceProp* device_prop_; // not owned; mutable void* scratch_; mutable unsigned int* semaphore_; mutable std::mutex mtx_; // to protect allocations_ mutable std::unordered_map allocations_; }; CudnnHolder::CudnnHolder(const cudaStream_t* stream, const CUDAPlace& place) : workspace_(nullptr), stream_(stream), place_(place) { PADDLE_ENFORCE(dynload::cudnnCreate(&cudnn_handle_)); PADDLE_ENFORCE(dynload::cudnnSetStream(cudnn_handle_, *stream_)); } CudnnHolder::~CudnnHolder() { PADDLE_ENFORCE(dynload::cudnnDestroy(cudnn_handle_)); } void CudnnHolder::ReallocateWorkspace(size_t required_workspace_len) { if (required_workspace_len <= WorkspaceSize()) { return; } if (workspace_ != nullptr) { // Maybe someone is using the current workspace PADDLE_ENFORCE(cudaStreamSynchronize(*stream_)); workspace_.reset(); } workspace_ = paddle::memory::Alloc(place_, required_workspace_len, paddle::memory::Allocator::kScratchpad); } CUDADeviceContext::CUDADeviceContext(CUDAPlace place) : place_(place), cudnn_holder_(nullptr) { CUDADeviceGuard guard(place_.device); compute_capability_ = GetCUDAComputeCapability(place_.device); multi_process_ = GetCUDAMultiProcessors(place_.device); max_threads_per_mp_ = GetCUDAMaxThreadsPerMultiProcessor(place_.device); PADDLE_ENFORCE(cudaStreamCreate(&stream_)); eigen_stream_.reset(new EigenCudaStreamDevice()); eigen_stream_->Reinitialize(&stream_, place); eigen_device_.reset(new Eigen::GpuDevice(eigen_stream_.get())); cublas_handle_.reset(new CublasHandleHolder(stream_, CUBLAS_DEFAULT_MATH)); if (TensorCoreAvailable()) { #if CUDA_VERSION >= 9000 cublas_tensor_core_handle_.reset( new CublasHandleHolder(stream_, CUBLAS_TENSOR_OP_MATH)); #endif } if (dynload::HasCUDNN()) { cudnn_holder_.reset(new CudnnHolder(&stream_, place)); } driver_version_ = GetCUDADriverVersion(place_.device); runtime_version_ = GetCUDARuntimeVersion(place_.device); LOG_FIRST_N(WARNING, 1) << "Please NOTE: device: " << place_.device << ", CUDA Capability: " << compute_capability_ << ", Driver API Version: " << driver_version_ / 1000 << "." << (driver_version_ % 100) / 10 << ", Runtime API Version: " << runtime_version_ / 1000 << "." << (runtime_version_ % 100) / 10; size_t cudnn_dso_ver = dynload::cudnnGetVersion(); LOG_FIRST_N(WARNING, 1) << "device: " << place_.device << ", cuDNN Version: " << cudnn_dso_ver / 1000 << "." << (cudnn_dso_ver % 100) / 10 << "."; { // Check CUDA/CUDNN version compatiblity auto local_cuda_version = runtime_version_ / 100; auto compile_cuda_version = CUDA_VERSION / 100; if (local_cuda_version < compile_cuda_version) { LOG_FIRST_N(WARNING, 1) << "WARNING: device: " << place_.device << ". The installed Paddle is compiled with CUDA " << compile_cuda_version / 10 << "." << compile_cuda_version % 10 << ", but CUDA runtime version in your machine is " << local_cuda_version / 10 << "." << local_cuda_version % 10 << ", which may cause serious incompatible bug. " << "Please recompile or reinstall Paddle with compatible CUDA " "version."; } if (dynload::HasCUDNN()) { auto local_cudnn_version = cudnn_dso_ver / 100; auto compile_cudnn_version = CUDNN_VERSION / 100; if (local_cudnn_version < compile_cudnn_version) { LOG_FIRST_N(WARNING, 1) << "WARNING: device: " << place_.device << ". The installed Paddle is compiled with CUDNN " << compile_cudnn_version / 10 << "." << compile_cudnn_version % 10 << ", but CUDNN version in your machine is " << local_cudnn_version / 10 << "." << local_cudnn_version % 10 << ", which may cause serious incompatible bug. " << "Please recompile or reinstall Paddle with compatible CUDNN " "version."; } } } callback_manager_.reset(new StreamCallbackManager(stream_)); } CUDADeviceContext::~CUDADeviceContext() { SetDeviceId(place_.device); Wait(); WaitStreamCallback(); cublas_handle_.reset(); cublas_tensor_core_handle_.reset(); eigen_stream_.reset(); eigen_device_.reset(); PADDLE_ENFORCE(cudaStreamDestroy(stream_)); } Place CUDADeviceContext::GetPlace() const { return place_; } void CUDADeviceContext::Wait() const { auto& allocator = DeviceTemporaryAllocator::Instance().Get(*this); allocator.Release([this]() { PADDLE_ENFORCE(cudaStreamSynchronize(stream_)); PADDLE_ENFORCE(cudaGetLastError()); }); } int CUDADeviceContext::GetComputeCapability() const { return compute_capability_; } int CUDADeviceContext::GetMaxPhysicalThreadCount() const { return multi_process_ * max_threads_per_mp_; } Eigen::GpuDevice* CUDADeviceContext::eigen_device() const { return eigen_device_.get(); } bool CUDADeviceContext::tensor_core_available() const { return cublas_tensor_core_handle_ != nullptr; } cudnnHandle_t CUDADeviceContext::cudnn_handle() const { return cudnn_holder_->cudnn_handle(); } CudnnWorkspaceHandle CUDADeviceContext::cudnn_workspace_handle() const { return CudnnWorkspaceHandle(cudnn_holder_.get()); } cudaStream_t CUDADeviceContext::stream() const { return stream_; } CUDAPinnedDeviceContext::CUDAPinnedDeviceContext() { eigen_device_.reset(new Eigen::DefaultDevice()); } CUDAPinnedDeviceContext::CUDAPinnedDeviceContext(CUDAPinnedPlace place) : place_(place) { eigen_device_.reset(new Eigen::DefaultDevice()); } Eigen::DefaultDevice* CUDAPinnedDeviceContext::eigen_device() const { return eigen_device_.get(); } Place CUDAPinnedDeviceContext::GetPlace() const { return place_; } #endif #ifdef PADDLE_WITH_MKLDNN MKLDNNDeviceContext::MKLDNNDeviceContext(CPUPlace place) : CPUDeviceContext(place), engine_(mkldnn::engine::cpu, 0), p_blobmap_() { p_blobmap_.reset(new BlobMap()); p_mutex_.reset(new std::mutex()); } namespace { // Current thread's id. thread_local int cur_thread_id = 0; } void set_cur_thread_id(int tid) { cur_thread_id = tid; } int get_cur_thread_id(void) { return cur_thread_id; } void MKLDNNDeviceContext::SetBlob(const std::string& name, std::shared_ptr data) const { BlobMap* pMap = p_blobmap_.get(); std::shared_ptr pBlob = nullptr; int tid = platform::get_cur_thread_id(); std::lock_guard lock(*p_mutex_.get()); // Find KeyBlob for current thread auto map_it = pMap->find(tid); if (map_it == pMap->end()) { // 1st time to set blob in current thread pBlob = std::shared_ptr(new KeyBlob()); (*pMap)[tid] = pBlob; } else { pBlob = map_it->second; } // Find Key in found (or newly created) KeyBlob auto key_it = pBlob->find(name); if (key_it == pBlob->end()) { (*pBlob)[name] = data; // create new blob } else { key_it->second = data; // set data to existing blob } // lock will be automatically released when out of scope return; } std::shared_ptr MKLDNNDeviceContext::GetBlob( const std::string& name) const { BlobMap* pMap = p_blobmap_.get(); std::shared_ptr pBlob = nullptr; int tid = platform::get_cur_thread_id(); std::lock_guard lock(*p_mutex_.get()); // Find KeyBlob for current thread firstly auto map_it = pMap->find(tid); if (map_it == pMap->end()) return nullptr; pBlob = map_it->second; // Find Blob via name auto key_it = pBlob->find(name); if (key_it == pBlob->end()) return nullptr; // lock will be automatically released when out of scope return key_it->second; } #endif } // namespace platform } // namespace paddle