# optional, If name is specified it must match the name of the model repository directory containing the model. name: "runtime" backend: "fastdeploy" # Input configuration of the model input [ { # input name name: "image" # input type such as TYPE_FP32、TYPE_UINT8、TYPE_INT8、TYPE_INT16、TYPE_INT32、TYPE_INT64、TYPE_FP16、TYPE_STRING data_type: TYPE_FP32 # input shape, The batch dimension is omitted and the actual shape is [batch, c, h, w] dims: [ -1, 3, -1, -1 ] }, { name: "scale_factor" data_type: TYPE_FP32 dims: [ -1, 2 ] } ] # The output of the model is configured in the same format as the input output [ { name: "multiclass_nms3_0.tmp_0" data_type: TYPE_FP32 dims: [ -1, 6 ] }, { name: "multiclass_nms3_0.tmp_2" data_type: TYPE_INT32 dims: [ -1 ] } ] # Number of instances of the model instance_group [ { # The number of instances is 1 count: 1 # Use GPU, CPU inference option is:KIND_CPU kind: KIND_GPU # The instance is deployed on the 0th GPU card gpus: [0] } ] optimization { execution_accelerators { gpu_execution_accelerator : [ { # use Paddle engine name: "paddle", } ] }}