import fastdeploy as fd import cv2 import os def parse_arguments(): import argparse parser = argparse.ArgumentParser() parser.add_argument( "--model_dir", required=True, help="Path of PaddleDetection model.") parser.add_argument( "--image_file", type=str, required=True, help="Path of test image file.") return parser.parse_args() args = parse_arguments() runtime_option = fd.RuntimeOption() runtime_option.use_kunlunxin() if args.model_dir is None: model_dir = fd.download_model(name='ppyoloe_crn_l_300e_coco') else: model_dir = args.model_dir model_file = os.path.join(model_dir, "model.pdmodel") params_file = os.path.join(model_dir, "model.pdiparams") config_file = os.path.join(model_dir, "infer_cfg.yml") # settting for runtime model = fd.vision.detection.PPYOLOE( model_file, params_file, config_file, runtime_option=runtime_option) # predict if args.image_file is None: image_file = fd.utils.get_detection_test_image() else: image_file = args.image_file im = cv2.imread(image_file) result = model.predict(im) print(result) # visualize vis_im = fd.vision.vis_detection(im, result, score_threshold=0.5) cv2.imwrite("visualized_result.jpg", vis_im) print("Visualized result save in ./visualized_result.jpg")