[English](README.md) | 简体中文 # PaddleDetection检测模型在华为昇腾上的部署方案—FastDeploy ## 1. 说明 PaddleDetection支持利用FastDeploy在华为昇腾上快速部署检测模型 ## 2. 使用预导出的模型列表 为了方便开发者的测试,下面提供了PaddleDetection导出的各系列模型,开发者可直接下载使用。其中精度指标来源于PaddleDetection中对各模型的介绍,详情各参考PaddleDetection中的说明。 | 模型 | 参数大小 | 精度 | 备注 | |:---------------------------------------------------------------- |:----- |:----- | :------ | | [picodet_l_320_coco_lcnet](https://bj.bcebos.com/paddlehub/fastdeploy/picodet_l_320_coco_lcnet.tgz) |23MB | Box AP 42.6% | | [ppyoloe_crn_l_300e_coco](https://bj.bcebos.com/paddlehub/fastdeploy/ppyoloe_crn_l_300e_coco.tgz) |200MB | Box AP 51.4% | | [ppyoloe_plus_crn_m_80e_coco](https://bj.bcebos.com/fastdeploy/models/ppyoloe_plus_crn_m_80e_coco.tgz) |83.3MB | Box AP 49.8% | | [ppyolo_r50vd_dcn_1x_coco](https://bj.bcebos.com/paddlehub/fastdeploy/ppyolo_r50vd_dcn_1x_coco.tgz) | 180MB | Box AP 44.8% | 暂不支持TensorRT | | [ppyolov2_r101vd_dcn_365e_coco](https://bj.bcebos.com/paddlehub/fastdeploy/ppyolov2_r101vd_dcn_365e_coco.tgz) | 282MB | Box AP 49.7% | 暂不支持TensorRT | | [yolov3_darknet53_270e_coco](https://bj.bcebos.com/paddlehub/fastdeploy/yolov3_darknet53_270e_coco.tgz) |237MB | Box AP 39.1% | | | [yolox_s_300e_coco](https://bj.bcebos.com/paddlehub/fastdeploy/yolox_s_300e_coco.tgz) | 35MB | Box AP 40.4% | | | [faster_rcnn_r50_vd_fpn_2x_coco](https://bj.bcebos.com/paddlehub/fastdeploy/faster_rcnn_r50_vd_fpn_2x_coco.tgz) | 160MB | Box AP 40.8%| 暂不支持TensorRT | | [mask_rcnn_r50_1x_coco](https://bj.bcebos.com/paddlehub/fastdeploy/mask_rcnn_r50_1x_coco.tgz) | 128M | Box AP 37.4%, Mask AP 32.8%| 暂不支持TensorRT、ORT | | [ssd_mobilenet_v1_300_120e_voc](https://bj.bcebos.com/paddlehub/fastdeploy/ssd_mobilenet_v1_300_120e_voc.tgz) | 24.9M | Box AP 73.8%| 暂不支持TensorRT、ORT | | [ssd_vgg16_300_240e_voc](https://bj.bcebos.com/paddlehub/fastdeploy/ssd_vgg16_300_240e_voc.tgz) | 106.5M | Box AP 77.8%| 暂不支持TensorRT、ORT | | [ssdlite_mobilenet_v1_300_coco](https://bj.bcebos.com/paddlehub/fastdeploy/ssdlite_mobilenet_v1_300_coco.tgz) | 29.1M | | 暂不支持TensorRT、ORT | | [rtmdet_l_300e_coco](https://bj.bcebos.com/paddlehub/fastdeploy/rtmdet_l_300e_coco.tgz) | 224M | Box AP 51.2%| | | [rtmdet_s_300e_coco](https://bj.bcebos.com/paddlehub/fastdeploy/rtmdet_s_300e_coco.tgz) | 42M | Box AP 44.5%| | | [yolov5_l_300e_coco](https://bj.bcebos.com/paddlehub/fastdeploy/yolov5_l_300e_coco.tgz) | 183M | Box AP 48.9%| | | [yolov5_s_300e_coco](https://bj.bcebos.com/paddlehub/fastdeploy/yolov5_s_300e_coco.tgz) | 31M | Box AP 37.6%| | | [yolov6_l_300e_coco](https://bj.bcebos.com/paddlehub/fastdeploy/yolov6_l_300e_coco.tgz) | 229M | Box AP 51.0%| | | [yolov6_s_400e_coco](https://bj.bcebos.com/paddlehub/fastdeploy/yolov6_s_400e_coco.tgz) | 68M | Box AP 43.4%| | | [yolov7_l_300e_coco](https://bj.bcebos.com/paddlehub/fastdeploy/yolov7_l_300e_coco.tgz) | 145M | Box AP 51.0%| | | [yolov7_x_300e_coco](https://bj.bcebos.com/paddlehub/fastdeploy/yolov7_x_300e_coco.tgz) | 277M | Box AP 53.0%| | | [cascade_rcnn_r50_fpn_1x_coco](https://bj.bcebos.com/paddlehub/fastdeploy/cascade_rcnn_r50_fpn_1x_coco.tgz) | 271M | Box AP 41.1%| 暂不支持TensorRT、ORT | | [cascade_rcnn_r50_vd_fpn_ssld_2x_coco](https://bj.bcebos.com/paddlehub/fastdeploy/cascade_rcnn_r50_vd_fpn_ssld_2x_coco.tgz) | 271M | Box AP 45.0%| 暂不支持TensorRT、ORT | | [faster_rcnn_enhance_3x_coco](https://bj.bcebos.com/paddlehub/fastdeploy/faster_rcnn_enhance_3x_coco.tgz) | 119M | Box AP 41.5%| 暂不支持TensorRT、ORT | | [fcos_r50_fpn_1x_coco](https://bj.bcebos.com/paddlehub/fastdeploy/fcos_r50_fpn_1x_coco.tgz) | 129M | Box AP 39.6%| 暂不支持TensorRT | | [gfl_r50_fpn_1x_coco](https://bj.bcebos.com/paddlehub/fastdeploy/gfl_r50_fpn_1x_coco.tgz) | 128M | Box AP 41.0%| 暂不支持TensorRT | | [ppyoloe_crn_l_80e_sliced_visdrone_640_025](https://bj.bcebos.com/paddlehub/fastdeploy/ppyoloe_crn_l_80e_sliced_visdrone_640_025.tgz) | 200M | Box AP 31.9%| | | [retinanet_r101_fpn_2x_coco](https://bj.bcebos.com/paddlehub/fastdeploy/retinanet_r101_fpn_2x_coco.tgz) | 210M | Box AP 40.6%| 暂不支持TensorRT、ORT | | [retinanet_r50_fpn_1x_coco](https://bj.bcebos.com/paddlehub/fastdeploy/retinanet_r50_fpn_1x_coco.tgz) | 136M | Box AP 37.5%| 暂不支持TensorRT、ORT | | [tood_r50_fpn_1x_coco](https://bj.bcebos.com/paddlehub/fastdeploy/tood_r50_fpn_1x_coco.tgz) | 130M | Box AP 42.5%| 暂不支持TensorRT、ORT | | [ttfnet_darknet53_1x_coco](https://bj.bcebos.com/paddlehub/fastdeploy/ttfnet_darknet53_1x_coco.tgz) | 178M | Box AP 33.5%| 暂不支持TensorRT、ORT | | [yolov8_x_500e_coco](https://bj.bcebos.com/paddlehub/fastdeploy/yolov8_x_500e_coco.tgz) | 265M | Box AP 53.8% | [yolov8_l_500e_coco](https://bj.bcebos.com/paddlehub/fastdeploy/yolov8_l_500e_coco.tgz) | 173M | Box AP 52.8% | [yolov8_m_500e_coco](https://bj.bcebos.com/paddlehub/fastdeploy/yolov8_m_500e_coco.tgz) | 99M | Box AP 50.2% | [yolov8_s_500e_coco](https://bj.bcebos.com/paddlehub/fastdeploy/yolov8_s_500e_coco.tgz) | 43M | Box AP 44.9% | [yolov8_n_500e_coco](https://bj.bcebos.com/paddlehub/fastdeploy/yolov8_n_500e_coco.tgz) | 13M | Box AP 37.3% ## 3. 自行导出PaddleDetection部署模型 ### 3.1 模型版本 支持[PaddleDetection](https://github.com/PaddlePaddle/PaddleDetection)大于等于2.4版本的PaddleDetection模型部署。目前FastDeploy测试过成功部署的模型: - [PP-YOLOE(含PP-YOLOE+)系列模型](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.6/configs/ppyoloe) - [PicoDet系列模型](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.6/configs/picodet) - [PP-YOLO系列模型(含v2)](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.6/configs/ppyolo) - [YOLOv3系列模型](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.6/configs/yolov3) - [YOLOX系列模型](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.6/configs/yolox) - [FasterRCNN系列模型](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.6/configs/faster_rcnn) - [MaskRCNN系列模型](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.6/configs/mask_rcnn) - [SSD系列模型](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.6/configs/ssd) - [YOLOv5系列模型](https://github.com/PaddlePaddle/PaddleYOLO/tree/release/2.6/configs/yolov5) - [YOLOv6系列模型](https://github.com/PaddlePaddle/PaddleYOLO/tree/release/2.6/configs/yolov6) - [YOLOv7系列模型](https://github.com/PaddlePaddle/PaddleYOLO/tree/release/2.6/configs/yolov7) - [YOLOv8系列模型](https://github.com/PaddlePaddle/PaddleYOLO/tree/release/2.6/configs/yolov8) - [RTMDet系列模型](https://github.com/PaddlePaddle/PaddleYOLO/tree/release/2.6/configs/rtmdet) - [CascadeRCNN系列模型](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.6/configs/cascade_rcnn) - [PSSDet系列模型](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.6/configs/rcnn_enhance) - [RetinaNet系列模型](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.6/configs/retinanet) - [PPYOLOESOD系列模型](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.6/configs/smalldet) - [FCOS系列模型](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.6/configs/fcos) - [TTFNet系列模型](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.6/configs/ttfnet) - [TOOD系列模型](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.6/configs/tood) - [GFL系列模型](https://github.com/PaddlePaddle/PaddleDetection/tree/release/2.6/configs/gfl) ### 3.2 模型导出 PaddleDetection模型导出,请参考其文档说明[模型导出](https://github.com/PaddlePaddle/PaddleDetection/blob/release/2.6/deploy/EXPORT_MODEL.md),**注意**:PaddleDetection导出的模型包含`model.pdmodel`、`model.pdiparams`和`infer_cfg.yml`三个文件,FastDeploy会从yaml文件中获取模型在推理时需要的预处理信息 ### 3.3 导出须知 如果您是自行导出PaddleDetection推理模型,请注意以下问题: - 在导出模型时不要进行NMS的去除操作,正常导出即可 - 如果用于跑原生TensorRT后端(非Paddle Inference后端),不要添加--trt参数 - 导出模型时,不要添加`fuse_normalize=True`参数 ## 4. 详细的部署示例 - [Python部署](python) - [C++部署](cpp)