# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from paddle.trainer_config_helpers import * ######################## data source ################################ dict_path = 'gserver/tests/Sequence/tour_dict_phrase.dict' dict_file = dict() for line_count, line in enumerate(open(dict_path, "r")): dict_file[line.strip()] = line_count define_py_data_sources2( train_list='gserver/tests/Sequence/train.list', test_list=None, module='sequenceGen', obj='process', args={"dict_file": dict_file}) settings(batch_size=5) ######################## network configure ################################ dict_dim = len(open(dict_path, 'r').readlines()) word_dim = 128 hidden_dim = 128 label_dim = 3 # This config is designed to be equivalent with sequence_recurrent.py data = data_layer(name="word", size=dict_dim) emb = embedding_layer( input=data, size=word_dim, param_attr=ParamAttr(name="emb")) def step(y): mem = memory(name="rnn_state", size=hidden_dim) with mixed_layer( name="rnn_state", size=hidden_dim, bias_attr=False, act=SoftmaxActivation()) as out: out += identity_projection(input=y) out += full_matrix_projection( input=mem, param_attr=ParamAttr(name="___recurrent_layer_0__")) return out recurrent = recurrent_group(name="rnn", step=step, input=emb) recurrent_last = last_seq(input=recurrent) with mixed_layer( size=label_dim, act=SoftmaxActivation(), bias_attr=True) as output: output += full_matrix_projection(input=recurrent_last) outputs( classification_cost( input=output, label=data_layer( name="label", size=1)))